Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion

Measurement of Collider Neutrinos with the SND@LHC Experiment

7th IDPASC/LIP Students Workshop

Guilherme Soares

guilherme.m.s.soares@tecnico.ulisboa.pt

Laboratory of Instrumentation and Experimental Particle Physics

6th July 2022

Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion
•					
Index					

1 SND@LHC

2 Muon System

3 Test Beams

4 TI 18

5 Conclusion

Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion
	000000	00		0000	
Scatte	ring and Neutri	no Detector			

Simple but unorthodox system that detects neutrinos generated at ATLAS.

Detect neutrinos through scattering with an emulsion target.

Divided in 3 parts :

- Veto System (Scintillating Bars)
- Emulsion Target
 - Emulsion Bricks
 - Scintillating Fiber Trackers
- Muon System / Hadronic Calorimeter (Scintillating Bars)

Located \approx 480 m away from ATLAS IP

Shielded by \approx 100 m of rock

Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion
				0000	Ŭ
Scatter	ring and Neutri	no Detector			

Simple but unorthodox system that detects neutrinos generated at ATLAS.

Detect neutrinos through scattering with an emulsion target.

Divided in 3 parts :

- Veto System (Scintillating Bars)
- Emulsion Target
 - Emulsion Bricks
 - Scintillating Fiber Trackers
- Muon System / Hadronic Calorimeter (Scintillating Bars)

Located \approx 480 m away from ATLAS IP

Shielded by \approx 100 m of rock

Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion				
	000000								
0	Operate vision and Neutrine Detector								

Scattering and Neutrino Detector

Simple but unorthodox system that detects neutrinos generated at ATLAS.

Detect neutrinos through scattering with an emulsion target.

Divided in 3 parts :

- Veto System (Scintillating Bars)
- Emulsion Target
 - Emulsion Bricks
 - Scintillating Fiber Trackers
- Muon System / Hadronic Calorimeter (Scintillating Bars)

Located \approx 480 m away from ATLAS IP

Shielded by \approx 100 m of rock

Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion				
	0000000								
0	Operate vision and Neutrine Detectory								

Scattering and Neutrino Detector

Simple but unorthodox system that detects neutrinos generated at ATLAS.

Detect neutrinos through scattering with an emulsion target.

Divided in 3 parts :

- Veto System (Scintillating Bars)
- Emulsion Target
 - Emulsion Bricks
 - Scintillating Fiber Trackers
- Muon System / Hadronic Calorimeter (Scintillating Bars)

Located \approx 480 m away from ATLAS IP

Shielded by \approx 100 m of rock

Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion
	0000000				

Scattering and Neutrino Detector - Location

Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion
	0000000				

Scattering and Neutrino Detector - Location

Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion
	000000				

Objectives

Why build the SND?

- Unprecedented observation of Collider Neutrinos
- Unexplored energy range
- Lepton Flavour Universality Test
- Measurement of charm production through $pp \rightarrow \nu X$
- Complementary to FASER
- Proof of concept for next generation experiments

Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion
		•0			

Building the Muon System

Detector was assembled from July - October 2021

Frames for the Muon System were produced at LIP (Coimbra)

Participated in the assembly of the Muon System trackers

Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion
0	000000		0	0000	0

Building the Muon System

Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion
			•		

Test Beams

2 Test Beams at H8 (SPS) prior to TI 18 installation (only Muon System) :

1st Test Beam

- Start : 1st September
- Finish : 5th September
 1st time seeing data at all
- 2nd Test Beam
 - Start : 29th September
 - Finish : 6th October
 - 4 Pion beams with different energies
 - Varied beam luminosity
 - Different front-end electronic configurations
 - Most data for commissioning

Index O	SND@LHC 0000000	Muon System	Test Beams O	TI 18 ●000	Conclusion O
					-
Curren	t Status				

- Detector setup at TI 18 fully functioning
- Can see particles hitting the detector (cosmic rays and stray muons)
- Neutrinos are much rarer and need specialized analysis !
- Scrubbing lights up the whole detector (everything is working !)

Commissioning still ongoing :

- Interplane position alignments
- Intraplane position alignments
- Timing calibrations
- Energy calibration

Index O	SND@LHC 0000000	Muon System	Test Beams O	TI 18 0●00	Conclusion O
Curren	nt Status				

- Detector setup at TI 18 fully functioning
- Can see particles hitting the detector (cosmic rays and stray muons)
- Neutrinos are much rarer and need specialized analysis!
- Scrubbing lights up the whole detector (everything is working !)

Commissioning still ongoing :

- Interplane position alignments
- Intraplane position alignments
- Timing calibrations
- Energy calibration

Index O	SND@LHC 0000000	Muon System	Test Beams O	TI 18 00●0	Conclusion O
Timinc	Calibration				

Goals :

- Find if discrepancies came from the time difference distributions (possible bad channels)
- Establish constant map to correct timing
- Do all this in an easily repeatable and automated process that can be applied both retroactively and to new data

Process

- Fit all channels
- Find the mean
- Define and refine criteria for bad fits
- Get good description of differences
- Proceed to correct channels

Index O	SND@LHC 0000000	Muon System	Test Beams O	TI 18 000●	Conclusion O
Timing	Calibration				

Goals :

- Find if discrepancies came from the time difference distributions (possible bad channels)
- Establish constant map to correct timing
- Do all this in an easily repeatable and automated process that can be applied both retroactively and to new data

Process

- Fit all channels
- Find the mean
- Define and refine criteria for bad fits
- Get good description of differences
- Proceed to correct channels

Index	SND@LHC	Muon System	Test Beams	TI 18	Conclusion
					•
Final R	emarks and Fi	uture Work			

To sum it all up :

- SND@LHC has been built on a very short schedule, and is still being commissioned
- However, it is already taking data
- LIP has been heavily involved in the newest LHC experiment
- The contributions made by the group are very important

What's next?

- Fine tune the method
- Convolute it with other time corrections
- Apply it to the incoming Run 3 data
- Publish the results
- Move on to the next thing !