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1. PhD Work Plan



Where and why would one study the Quark-Gluon Plasma?

Hot and dense
> In ultra-relativistic heavy-ion collisions, e.g., (~perfect) liquid of

Pb-Pb or Au-Au, conducted at the LHC and at deconfined quarks

RHIC, which aim to explore and characterize the and gluons!

QGP.

> Signaled by an abrupt increase in energy and
particle densities about ~1 fm/c (102 s) after
the collision.

> Collective properties are lost on a timescale of
~10 fm/c due to fast fluid-like expansion.

> The QGP is believed to have existed during the v=0F  y=1ly=s
50 (time (fm/c))

first microseconds of our Universe’s lifetime.

Wit Busza et al. “Heavy Ion Collisions: The Big Picture and the Big
Questions”



How does one study the Quark-Gluon Plasma?

> QGP time evolution is rapid - need for a probe that can identify

different timescales during the collision’s first 10 fm/c.

> Hadronic jets (fragmentation of energetic quarks and gluons)
are produced concurrently with the QGP, through which they

have to propagate and interact with - imprinted modifications

tell a story (jet quenching).

> Jet evolution spans a wide range of scales - sensitivity to the

QGP at different timescales! M. van Leeuwen. Results of the ALICE
experiment. 54 Int. Winter Meet. on Nuc. Phys.,

2016.
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PhD research aim: To endow jets produced in heavy-ion collisions with the

ability to serve as yoctosecond-resolution probes of the QGP.




Jet evolution and jet observables

Vacuum jet evolution (proton-proton collisions) is well
established via probabilistic implementation of the DGLAP

equations (momentum space).

> Need for a space-time description of in-medium jet

evolution (heavy ion collisions).

> Need for observables that can tap into the relation
between the medium-induced modifications of jets

and the time evolution of the QGP.

Recent work: L. Apolinario., A. Cordeiro, K. Zapp, Time
\

>

> reclustering for jet quenching studies, Eur.Phys.].C 81 (2021) 6,
561



https://inspirehep.net/literature/1835064
https://inspirehep.net/literature/1835064

2. Current ongoing work



Jet quenching studies

> [Experimentally, heavy ion jets appear to suffer modifications
when they travel through the QGP:
o transverse momentum loss
O orientation
o composition
O

Compare heavy ion jets with a well established proton-proton
baseline (vacuum jets)

o

Infer properties of
the QGP!




Nuclear modification factor - RAA
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Bin migration effects in RAA - a toy model
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Bin migration effects in RAA - a toy model
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QAA - a proxy for jet energy loss
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“1-QAA is a proxy for the average fractional jet energy loss”
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RAA vs QAA for different event types

mm——— gamma-tjet

RAA e dijet QAA
08 e
075 L=
- 0.96 —
E_ 0.94
3 o
: Oﬁ 0.9 =
e 0.88 —
A E Jewel+Pythia 2.2.0
= 04 Anti-kt jets
045 082 —
0-‘ 5 1 1 1 1 I 1 1 1 1 I 1 1 1 1 l 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 0. ? 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
100 200 300 400 500 600 700 qOO 200 300 q 400 500 600
Pl (GeV) p, (GeV)

all reconstructed jets with pT > 50 GeV VSNN = 5.02 TeV



>
sso| ABisua

aAljelal Bbuisealoap

QAA as a function of jet radius
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Follow-up work

> Work on possible parametrizations of the QAA as a function of transverse

momentum and jet radius;

> Explore possible correlations between the QAA and the formation times

calculated in Apolinario et al., “Time reclustering for jet quenching

studies” (2021);
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https://inspirehep.net/literature/1835064
https://inspirehep.net/literature/1835064

Thank youl!
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Back-up slides
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Absolute energy loss
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Separable parametrization of average energy loss

pk independence of ratio = Apr(ph, R) = fi1(ph) X fo(R)?
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