Towards a Yoctosecond Imaging Tool for the Quark-Gluon Plasma

João M. Silva

PhD supervisors: Guilherme Milhano (LIP/IST) Liliana Apolinário (LIP/IST) Carlos Salgado (IGFAE/USC)

> 7th IDPASC/LIP Students Workshop Coimbra, July 2022

1. PhD Work Plan

Where and why would one study the Quark-Gluon Plasma?

- In ultra-relativistic heavy-ion collisions, e.g., Pb-Pb or Au-Au, conducted at the LHC and at RHIC, which aim to explore and characterize the QGP.
- Signaled by an **abrupt increase** in energy and particle densities about ~1 fm/c (10⁻²⁴ s) after the collision.
- Collective properties are lost on a timescale of ~10 fm/c due to fast fluid-like expansion.
- The QGP is believed to have existed during the first microseconds of our Universe's lifetime.

Wit Busza et al. "Heavy Ion Collisions: The Big Picture and the Big Questions"

How does one study the Quark-Gluon Plasma?

- QGP time evolution is rapid need for a probe that can identify different timescales during the collision's first 10 fm/c.
- Hadronic jets (fragmentation of energetic quarks and gluons) are produced concurrently with the QGP, through which they have to propagate and interact with - imprinted modifications tell a story (jet quenching).
- Jet evolution spans a wide range of scales sensitivity to the QGP at different timescales!

M. van Leeuwen. Results of the ALICE experiment. 54 Int. Winter Meet. on Nuc. Phys., 2016.

How does one study the Quark-Gluon Plasma?

- QGP time evolution is rapid need for a probe that can identify different timescales during the collision's first 10 fm/c.
- Hadronic jets (fragmentation of energetic quarks and gluons) are produced concurrently with the QGP, through which they have to propagate and interact with - imprinted modifications tell a story (jet quenching).
- Jet evolution spans a wide range of scales sensitivity to the QGP at different timescales!

M. van Leeuwen. Results of the ALICE experiment. 54 Int. Winter Meet. on Nuc. Phys., 2016.

PhD research aim: To endow jets produced in heavy-ion collisions with the ability to serve as yoctosecond-resolution probes of the QGP.

Jet evolution and jet observables

Vacuum jet evolution (**proton-proton** collisions) is well established via probabilistic implementation of the DGLAP equations (momentum space).

- Need for a space-time description of in-medium jet evolution (heavy ion collisions).
- Need for observables that can tap into the relation between the medium-induced modifications of jets

and the time evolution of the QGP.

Recent work: L. Apolinário., A. Cordeiro, K. Zapp, Time reclustering for jet quenching studies, Eur.Phys.J.C 81 (2021) 6,

2. Current ongoing work

Jet quenching studies

- Experimentally, heavy ion jets appear to suffer modifications when they travel through the QGP:
 - transverse momentum loss
 - orientation
 - composition
 - 0 ...

Compare **heavy ion jets** with a well established proton-proton baseline (**vacuum jets**)

Nuclear modification factor - RAA

Bin migration effects in RAA - a toy model

$$p_T \to (1 - \epsilon) p_T$$

Bin migration effects in RAA - a toy model

Same energy loss but different RAA!

QAA - a proxy for jet energy loss

"1-QAA is a proxy for the average fractional jet energy loss"

RAA vs QAA for different event types

all reconstructed jets with pT > 50 GeV

 $\sqrt{s_{NN}} = 5.02 ~{
m TeV}$ 13

QAA as a function of jet radius

Work on possible parametrizations of the QAA as a function of transverse momentum and jet radius;

Explore possible correlations between the QAA and the formation times calculated in Apolinário et al., "Time reclustering for jet quenching studies" (2021);

Thank you!

Back-up slides

subleading without recoils

Absolute energy loss

19

Separable parametrization of average energy loss

