

A next-generation gamma-ray observatory powered by Machine Learning techniques

Author: Borja S. González (LIP Lisbon / IST)

Supervisor: Ruben Conceição (LIP/IST) Co-supervisors: Alberto Guillén (UGR), Mário Pimenta (LIP/IST)

> 7th IDPASC/LIP PhD Students Workshop Coimbra, July 6th -7th, 2022

Southern Wide-field Gamma-ray Observatory (SWGO)

~3-year R&D project to design and plan the next generation wide field-of-view gamma-ray able to survey and monitor the Southern sky

- Southern Wide-field Gamma-ray Observatory (SWGO)
 - → Formed at July 1st 2019
 - → 12 Countries
 - → ~50 institutes
 - More than 100 scientists
 - → To be built in South America

Energy range covered with SWGO

From many tens of GeV to many tens of PeV.

Energy range covered with SWGO

From many tens of GeV to many tens of PeV.

Energy range covered with SWGO

From many tens of GeV to many tens of PeV.

Detector design options

Possible detectors for SWGO

Detector design options

Possible detectors for SWGO

A scalable array

WCD options

Е

WCD options

F

Mercedes WCD: Explore asymmetries to tag muons

Publications:

Eur.Phys.J.C 81 (2021) 6, 542. Neural Comput & Applic 34, 5715–5728 (2022). Physics Letters B 827, 136969 (2022) -1 -2 -2 -2 -2 -2 -1 0 x [m] 3x 8-inch PMTs Water height 1.7 m

Publications: arXiv:2203.08782 2

Simulation and ML model

CNN to get the probability that a muon has passed through the WCD.

arXiv:2203.08782

Simulation and ML model

 Variable to evaluate the gamma/hadron discrimination power and the muon quantity in the shower.

$$P_{\mu} = \sum_{i=1}^{N_S} P_{\mu}^{(i)}$$

- Excellent gamma/hadron discrimination at E ~ 1TeV.
 - → S/sqrt(B) ~ 5.
 - → Submitted to EPJC (arXiv:2203.08782).
 - Previous work with 4 PMTs:
 Eur.Phys.J.C 81 (2021) 6, 542.

Detection of Up-going neutrinos

Detection of Up-going neutrinos

Ò

2

Up-going

Future steps: Enhance γ /hadron separation

Combine muon info at WCD with the shower footprint.

Collaboration with the University of Granada (and summer students)

Conclusions

- Studies at few TeV show that it is possible to perform an excellent muon tagging/counting using a small-WCD with multiple PMTs.
 - → Excellent gamma/hadron discrimination.
 - → The method works in vertical/inclined showers and compact/sparse array making it interesting for SWGO.
 - → arXiv:2203.08782 [physics.ins-det]
- Encouraging preliminary results for up-going neutrinos detection (from 10 GeV to 100 TeV).
- On-going work and next steps:
 - Reconstruction of energy and direction for neutrino events.
 - \rightarrow γ /h discrimination combining the WCD muon info with shower patterns.
 - Optimisation studies to be conducted: WCD dimensions, number of PMTs, array fill factor.

Thanks for your attention!

Acknowledgements: IDPASC PhD grant PRT/BD/151553/2021

