Going to the light-front with contour deformations

G. Eichmann¹ Eduardo Ferreira¹ A. Stadler¹

¹Departamento de Física – Instituto Superior Técnico LIP – Laboratório de Instrumentação e Física Experimental de Partículas

LIP/IDPASC PhD Student Workshop - 6/7th July 2022

イロト イヨト イヨト イヨト 二日

Hadrons on the Light Front

Focus: Hadrons on the light front, $x^+ = 0$.

 Natural frame for defining parton distribution functions: PDFs, TMDs, ...

 Future: COMPASS/AMBER @ CERN EIC @ Brookhaven National Laboratory.

> (AMBER: arXiv:1808.00848) (EIC: Eur. Phys. J. A 52.9 (2016))

Hadronic quantities

• Bethe-Salpeter Wavefunction $\langle 0 | T\Phi(x)\Phi(0) | P \rangle$

• Generic Correlator $\langle P_f | \operatorname{T}\Phi(x)\mathcal{O}\Phi(0) | P_i \rangle$

• With $x^+ = x^0 + x^3$, $x^- = x^0 - x^3$, $\vec{x}_\perp = \{x^1, x^2\}$.

(Lorce, Pasquini, Vanderhaeghen; 2011)

Scalar toy model

Scalar toy model:

 ϕ of mass m

 χ of mass μ

► **Objective:** Calculate BSWF in Euclidean metric for two *φ* particles,

= g

► Need to solve the BSE:

 $\blacktriangleright~{\bf G_0}$ — We use tree level propagators

$$\mathbf{G_0} = \frac{1}{q_1^2 + m^2} \frac{1}{q_2^2 + m^2}$$

 \blacktriangleright K — We assume a single scalar exchange

The BSWF is a function of the kinematic invariants:

 $\Psi = \mathbf{G}_{\mathbf{0}}\psi \qquad \psi = \mathbf{K}\mathbf{G}_{\mathbf{0}}\psi \qquad -M^{2} = \frac{P^{2}}{4m^{2}} = t \quad \frac{k^{2}}{m^{2}} = x \quad \omega = \hat{k} \cdot \hat{P}$ $\overset{\text{Resonances}}{\underset{M = 2m}{}} \qquad \psi(x, \omega, t, \alpha) = \frac{m^{4}}{(2\pi)^{3}} \frac{1}{2} \int_{0}^{\infty} dx' x' \int_{-1}^{1} d\omega' \sqrt{1 - \omega'^{2}} \mathbf{G}_{\mathbf{0}}(x', \omega', t, \alpha) \\ \times \int_{-1}^{1} dy \, \mathbf{K}(x, \omega, x', \omega', y) \psi(x', \omega', t, \alpha) \\ \leftarrow \mathbf{G}_{\mathbf{0}} \leftarrow$

Integration Path

- Constraints:
 - 1. Must go though $(1 + |\alpha|)\sqrt{t}$.
 - 2. $\operatorname{Re}\{\sqrt{x}\}$ and $|\sqrt{x}|$ must always increase.

- γ_1 Line from the origin to $(1+|\alpha|)\sqrt{t}.$
- γ_2 Return to the real axis, with increasing radius.

 $\gamma_{\mathbf{3}}$ — $\sqrt{x}
ightarrow \infty$ on the real axis.

► If the cuts don't cross the real axis ⇒ no deformation needed.

 ► The LFWF is defined as:

$$\begin{split} \Psi_{LF}\left(\alpha,k_{\perp},P\right) \\ = \mathcal{N}\int dq^{-} \left.\Psi(q,P)\right|_{q^{+}=\frac{\alpha}{2}P^{+},q_{\perp}=k_{\perp}} \end{split}$$

In our kinematic variables:

$$q^{-} = -\frac{2m^2}{P^+} \left(2\sqrt{x}\sqrt{t}\omega + \alpha t\right)$$

 α and $x=\frac{k^2}{m^2}=\frac{k_{\perp}^2}{m^2}$ and t are external variables

Definition of the LFWF

$$\Psi_{LF}(\alpha, x, t) = \mathcal{N} \frac{2\sqrt{x}\sqrt{t}}{i\pi} \int_{-\infty}^{\infty} d\omega \,\Psi(x, \omega, t, \alpha)$$

- Need the BSWF in $\omega \in (-\infty, \infty)$.
- We use the Schlessinger method for analytic continuation:

$$R(\omega) = \frac{f(\omega_1)}{1 + \frac{a_1(\omega - \omega_1)}{1 + \frac{a_2(\omega - \omega_2)}{1 + \frac{a_3(\omega - \omega_3)}{\dots}}}}$$

• $\{a_i\}$ obtained by imposing $R(\omega_i) = f(\omega_i)$

・ロット (四) (川田) (日) (日) (日)

Results for the LFWF:

- Symmetric in α .
- Vanishes at $\alpha = \pm 1$.

Parton distribution amplitude: in our variables

$$\phi(\alpha) = \int_0^\infty dx \, \Psi_{LF}(x,\alpha,t)$$

Advertisement:

More details can be found in:

Editors' Suggestion

Going to the light front with contour deformations

Gernot Eichmann, Eduardo Ferreira, and Alfred Stadler Phys. Rev. D **105**, 034009 (2022) – Published 10 February 2022

This work introduces a new method for computing correlation functions on the light front. Starting from Bethe-Salpeter equations, the authors present calculations using contour deformation and analytic continuation, finding good agreement with established methods. This approach shows promise as an efficient and generalizable technique with applications to parton distribution functions and related constructions.

PDF HTML

G. Eichmann, EF, A. Stadler; Phys. Rev. D 105, 034009 (2022)

Hadronic Matrix Elements

Focus: Understading hadronic composition and interactions:

 $\mathcal{G}^{\mu\nu\rho\dots}_{\alpha\beta\delta\dots} = \langle P_f | \operatorname{T}\overline{\psi}(x) \mathcal{O}^{\mu\nu\rho\dots}_{\alpha\beta\delta\dots}\psi(0) | P_i \rangle$ $\mathcal{G}^{\mu\nu\rho\dots}_{\alpha\beta\delta\dots} = \sum_j H_j(P,k,\Delta) (\tau_j)^{\mu\nu\rho\dots}_{\alpha\beta\delta\dots} (P,k,\Delta)$

These interactions probe the partonic distributions and interactions of Hadrons

Main idea: Processes = Hard scattering × Hadronic structure functions (Review: Section 2 of Belitsky, Radyushkin, 2005)

Writing the hadronic correlation

We write the hadronic correlation using elements calculated via functional methods:

 Partonic distributions are calcuated by integrating the correlator in k⁻ and taking appropriate traces.

- We explored a new way to calculate the LFWFs and PDAs.
- Very good agreement with the established Nakanishi method.
- We can also tackle extensions to the scalar toy model: unequal masses and complex conjugate mass poles in the propagators — features of many QCD calculations.
- We can calculate beyond the $M^2 = 4m^2$ threshold.
- The contour deformation method can also be applied to other correlation functions just need a region free of singularities where the path can be deformed.
- ▶ We have also explored a way forward for the calculation of partonic structure functions.

Thanks for your attention!

BACKUP

Bethe-Salpeter Wavefunction

► The Bethe-Salpeter Wavefunction (BSWF) appears as the residue of a correlation function G(p):

$$\Psi(x, P) = \langle 0 | \operatorname{T} \phi(0) \phi(x) | P \rangle$$
$$\Psi(k, P) = \int d^4 x e^{-ik \cdot x} \Psi(x, P)$$

 Determined by the Bethe-Salpeter Equation:

 $\Psi = \mathbf{G_0} \mathbf{K} \Psi$

- ${f G}_0$ product of the dressed propagators;
 - **K** interaction kernel between the two particles.

Analytic Structure

$$\mathbf{G_0} = \frac{1}{q_1^2 + m^2} \frac{1}{q_2^2 + m^2}$$

- ▶ Poles when $q_{1/2}^2 = -m^2$
- Integration in $\omega \implies$ branch cuts in complex x plane:

$$\mathbf{K} = \frac{g^2}{(q-q')^2 + \mu^2}$$

- ► Poles when $(q q')^2 = -\mu^2$.
- Branch cuts in complex x' plane:

590

- Small ω and α dependance.
- Symmetry for the combined transformation $\alpha \rightarrow -\alpha$ and $\omega \rightarrow -\omega$.
- Approximately a monopole:

$$\psi \approx \frac{1}{q^2 + \gamma}$$

もつてい 聞 (声を)(曲を)(目を)

Light-Front Wavefunction

► Light-Front Wavefunction (LFWF): Fourier transform of the BSWF at $x = \lambda n + \vec{x}_{\perp}$, with *n* along the light front.

$$\Psi_{LF}(q^+, \vec{q}_\perp, P) =$$

= $\mathcal{N} \int dq^- \Psi \left(q^-, q^+, \vec{q}_\perp, P \right),$

▶ Parton Distribution Amplitude (PDA): Integration of the Ψ_{LF} over q_{\perp} .

$$\phi(\alpha, P) = \int d^2 q_\perp \Psi_{LF}\left(\frac{\alpha}{2}P^+, \vec{q}_\perp, P\right).$$

$$\begin{split} \xi &= \frac{q_1^+}{P^+} = 2\alpha - 1 \ \text{ is the longitudinal} \\ & \text{momentum fraction} \\ q &= k + \frac{\alpha}{2}P \ \text{ is the relative momentum (with} \\ k^+ &= 0). \end{split}$$

$$\sqrt{t} = 0.20 + 0.80i$$

・ロト ・回ト ・ヨト ・ヨト

LFWF: α and x dependance

・ロト・日本・日本・日本・日本・日本

Moving further

(Picture: Diehl, 2016); (Diehl, 2003); (Meissner, Goeke, Metz, Schlegel; 2008); (Meissner, Metz, Schlegel; 2009)

Unequal masses

• Consider two ϕ of different masses:

$$m_1 = m(1+\varepsilon)$$
 $m_2 = m(1-\varepsilon)$

$$\frac{m_1}{m_2} = \frac{1+\varepsilon}{1-\varepsilon} \qquad 2m = m_1 + m_2$$

▶ $\varepsilon \in [-1,1]$ sets the ratio of the masses ▶ G_0 is now:

$$\mathbf{G_0} = \frac{1}{q_1^2 + m_1^2} \frac{1}{q_2^2 + m_2^2}$$

► Cuts in *x*:

$$\begin{split} \sqrt{x}_{\pm}^{\lambda} &= \mp (1 \pm \alpha) \sqrt{t} \\ &\times \left[\omega + i\lambda \sqrt{1 - \omega^2 + \frac{1}{t} \left(\frac{1 \pm \varepsilon}{1 \pm \alpha}\right)^2} \right] \end{split}$$

- Integration path still works
- $\blacktriangleright \varepsilon$ adds skewness

Complex Conjugate Masses

 Also consider complex conjugate mass poles:

$$D_{\phi}(q,m) = \frac{1}{2} \left(\frac{1}{q^2 + m^2} + \frac{1}{q^2 + (m^*)^2} \right)$$

- $\blacktriangleright \ m^2 \to m^2(1+i\delta) \text{, with } m^2, \delta \in \mathbb{R}_+$
- ► G₀ becomes:

$$\mathbf{G_0} = D_\phi(q_1, m) D_\phi(q_2, m)$$

There are now 8 cuts:

$$\begin{split} \sqrt{x}_{\pm}^{\{\lambda,\nu\}} &= \mp (1\pm\alpha)\sqrt{t} \\ &\times \left[\omega + i\lambda\sqrt{1-\omega^2 + \frac{1}{t}\frac{1+\nu i\delta}{(1\pm\alpha)^2}}\right] \end{split}$$

For δ < δ_{crit}, contour deformation always possible.

Nakanishi Method

b BSWF defined from a smooth weight function $g(x, \alpha)$.

$$\Psi(q,P) = \frac{1}{m^4} \int_0^\infty dx' \int_{-1}^1 d\alpha' \frac{g(x',\alpha')}{\left[\kappa + 1 + x' + (1 - \alpha'^2)t\right]^3}, \qquad \kappa = \frac{1}{m^2} \left(q - \frac{\alpha'}{2}P\right)^2.$$

▶ Light front quantities obtained from the weight function *g*, for example LFWF:

$$\Psi_{LF} = \frac{\mathcal{N}}{m^2} \int_0^\infty dx' \frac{g(x',\alpha)}{\left[x'+1+x+(1-\alpha^2)t\right]^2}$$

► The BSE can be rewritten for g:

$$\begin{split} \int_{0}^{\infty} dx' \frac{g(x',\alpha)}{\left[x'+1+x+(1-\alpha^{2})t\right]^{2}} &= c \int_{0}^{\infty} dx' \int_{-1}^{1} d\alpha' V(x,x',\alpha,\alpha')g(x',\alpha') \\ V(x,x',\alpha,\alpha') &= \frac{K(x,x',\alpha,\alpha')+K(x,x',-\alpha,-\alpha')}{2\left[x+1+(1-\alpha^{2})t\right]} \\ K(x,x',\alpha,\alpha') &= \int_{0}^{1} dv \frac{\theta(\alpha-\alpha')(1-\alpha)^{2}}{\left[v(1-\alpha)(x'+1+(1-\alpha'^{2})t)+(1-v)C\right]^{2}} \\ C &= (1-\alpha')(1+x+(1-\alpha^{2})t) + (1-\alpha)\left(\frac{\beta}{v}+x'\right) \\ &= 1 + (\beta + x) = 1 + (\beta + x) = 1 \\ \end{split}$$

Schlessinger Point Method

Numerical analytic continuation method:

$$R(\omega) = \frac{f(\omega_1)}{1 + \frac{a_1(\omega - \omega_1)}{1 + \frac{a_2(\omega - \omega_2)}{1 + \frac{a_3(\omega - \omega_3)}{\dots}}}$$

•
$$\{a_i\}$$
 obtained by imposing $R(\omega_i) = f(\omega_i)$

► Recurrence relations:

$$R(\omega) = \frac{f(\omega_1)}{1 + \mathcal{Z}_1} = \frac{f(\omega_1)}{1 + \frac{a_1(\omega - \omega_1)}{1 + \mathcal{Z}_2}} = \dots$$

$$\begin{aligned} \mathcal{Z}_k &= \frac{a_k(\omega - \omega_k)}{1 + \mathcal{Z}_{k+1}} \Leftrightarrow \mathcal{Z}_{k+1} = \frac{a_k(\omega - \omega_k)}{\mathcal{Z}_k} - 1, \\ \omega &= \omega_k \implies \mathcal{Z}_k = 0 \end{aligned}$$

$$f(\omega_2) = \frac{f(\omega_1)}{1 + a_1(\omega_2 - \omega_1)},$$
$$\mathcal{Z}_1 = \frac{f(\omega_1)}{f(\omega_2)} - 1 \Leftrightarrow a_1 = \frac{\mathcal{Z}_1}{\omega_2 - \omega_1},$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Why not do one more iteration?

• Do one more iteration for a value of $\omega = W \in \mathbb{C}$, with the obtained Ψ $\Psi(x, W, t, \alpha) = \mathcal{N} \int_0^\infty dx' \int_{-1}^1 d\omega' \mathcal{K}(x, x', W, \omega') \Psi(x', \omega', t, \alpha)$

Problem: Kernel cuts will change

For $\omega \in \mathbb{C}$, and $y, \omega' \in [-1, 1]$, Ω turns into a region bounded by the $r(\theta)$ ellipse, with $\omega = a + ib$ and $\sqrt{1 - \omega^2} = c + id$:

$$r(\theta) = \sqrt{a^2 + c^2} \sqrt{\cos^2 \theta + E^2 \sin^2 \theta} \qquad E = \begin{cases} \frac{d^2}{a^2} & \alpha \neq 0\\ \frac{b^2}{1 + b^2} & \alpha = 0 \end{cases}$$

Kernel cuts will eventually overlap

Cuts for complex conjugate mass poles

$$\operatorname{Im}\{\sqrt{\tau}\}\operatorname{Re}\{i\sqrt{1+i\delta}\} < \operatorname{Im}\{i\sqrt{1+i\delta}\}\operatorname{Re}\{\sqrt{\tau}\}.$$

