7th IDPASC PhD Student Workshop @ Coimbra - 6/7 July 2022

The motion of S2 as dark matter detector Arianna Foschi, PhD @ CENTRA/IST

Supervisor: prof. Vitor Cardoso co-supervisor: prof. Paulo Garcia

grit gravitation in técnico

Fundação para a Ciência e a Tecnologia Idea: Constrain an ultralight scalar field cloud around the supermassive Black Hole (BH), *Sagittarius A**, at the center of the Milky Way using orbital motion of S-stars.

We will focus on star S2.

Data: We have **astrometry** (positions in the sky) and **spectroscopy** (radial velocity measurements).

Motivation: Ultralight bosons are possible candidates for **Dark Matter** (DM).

DM may cluster around supermassive BHs (Sadeghian et al. 2013).

The Galactic Center (GC) is the perfect laboratory to look for it.

Credits to S. Gillessen, GRAVITY Coll., Max Planck Institute

Theoretical setup

$$S = \int d^4x \sqrt{-g} \left(\frac{R}{16\pi G c^{-4}} - \frac{1}{2} g^{\alpha\beta} \partial_{\alpha} \Psi^* \partial_{\beta} \Psi^* - \frac{\mu}{2} \Psi \Psi^* \right) \longrightarrow \begin{cases} G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} & \text{Einstein-Klein-Gordon} \\ \Box \Psi = \mu^2 \Psi & \left(\mu = \frac{m_s c}{\hbar}\right) & \text{System of equations} \end{cases}$$

$$Mass \ \text{coupling} \quad \alpha = r_g \mu = \left[\frac{GM_{\bullet}}{c^2} \right] \left[\frac{m_s c}{\hbar} \right]$$

In the limit $\alpha \ll 1$, the fundamental mode of the field $(\ell = m = 1)$ is given by (Brito et al., 2015)

$$\Psi = A_0 e^{-i(\omega_R t - \varphi)} r \,\alpha^2 e^{-r\alpha^2/2} \sin \theta \qquad \left(A_0^2 = \Lambda \frac{\alpha^4}{64 \,\pi}\right)$$

We compute the energy momentum of the scalar field

$$T_{\mu\nu} = \frac{1}{2} \left(\partial_{\alpha} \Psi^* \partial_{\beta} \Psi + \partial_{\beta} \Psi^* \partial_{\alpha} \Psi \right) - \frac{1}{2} g^{\alpha\beta} \left(\partial_{\sigma} \Psi^* \partial^{\sigma} \Psi + \mu^2 \Psi^* \Psi \right)$$

And we obtain the energy density of the scalar field in the low energy limit:

$$\rho = \frac{m_s^2 c^2}{\hbar^2} |\Psi|^2 + \mathcal{O}\left(c^{-4}\right)$$

Credits for image to Ana Carvalho, from Brito et al.,2015

Analytical results

[1] GRAVITY Coll. et al., "Scalar field effects on the orbit of S2 star", MNRAS 489, 4606-4621 (2019)

using emcee (Foreman-Mackey et al., 2013) Python package

We need to sample the posterior distribution of a set of parameters θ_i by means of Bayes' theorem

$$P(\theta \mid D) \propto P(D \mid \theta) P(\theta)$$

D = data set

$$\theta_{i} = \{e, a, \Omega, i, \omega, t_{p}, R_{0}, M_{\bullet}, \alpha, \Lambda\}$$
Keplerian BH Mass Scalar f

elements

Scalar field cloud parameters

Gaussian likelihood

 $P(D \mid \theta)$ = Likelihood

$$\log(P(D \mid \theta)) = -\frac{1}{2} \left[\sum_{i=0}^{N_{\text{data}}} \left(\frac{x^i - x^i_{\text{data}}}{\sigma_x^i} \right)^2 + \left(\frac{y^i - y^i_{\text{data}}}{\sigma_y^i} \right)^2 + \left(\frac{v^i_r - v^i_{r\text{data}}}{\sigma_{v_r}^i} \right)^2 \right]$$

 $P(\theta)$ = Prior distributions of θ_i

 \rightarrow

Flat priors, i.e. uniformly distributed in

and GC

distance

$$\left(\theta_{i}^{\text{true}} - \Delta \theta_{i}^{\text{true}}\right) \leq \theta_{i} \leq \left(\theta_{i}^{\text{true}} + \Delta \theta_{i}^{\text{true}}\right)$$

Summary and future perspectives

Summary

- We look for ultralight boson in the form of a cloud around the supermassive BH at the center of our Galaxy;
- We know that if the coupling of the field is in the range $0.001 \le \alpha \le 0.05$ then it can leave imprints in the orbital elements of S2 and we have some chances to detect it;
- We focus on this range and we implement a MCMC method to find the best-fit estimates for scalar field parameters α , Λ ;
- Preliminary results show that the same range of α is excluded by observations and we found no
 evidences for a scalar field cloud.

Summary and future perspectives

Summary

- We look for ultralight boson in the form of a cloud around the supermassive BH at the center of our Galaxy;
- We know that if the coupling of the field is in the range $0.001 \le \alpha \le 0.05$ then it can leave imprints in the orbital elements of S2 and we have some chances to detect it;
- We focus on this range and we implement a MCMC method to find the best-fit estimates for scalar field parameters α , Λ ;
- Preliminary results show that the same range of α is excluded by observations and we found no
 evidences for a scalar field cloud.

Future perspectives

- Extend the same analysis to other S-stars to confirm or reject results on S2;
- Test different matter distributions around Sgr A*, i.e. power law distributions and/or vector clouds;

Thank you for your attention!