

# STUDY OF NEW SCINTILLATOR SAMPLES FOR FUTURE DETECTORS

CHRISTIAN NUNZIANTE TANGA

SUPERVISORS:

RUTE PEDRO AGOSTINHO GOMES BEATRIZ PEREIRA



2

### Goals of the project:

Study and develop plastic scintillator based on new materials, with competitive light yield



3

### Goals of the project:

Study and develop plastic scintillator based on new materials, with competitive light yield





4

### Goals of the project:

Study and develop plastic scintillator based on new materials, with competitive light yield



Future experiments require plastic scintillating materials with high scintillation efficiency, long-term stability & high radiation hardness



### **Future Collider (FCC)**

The Future Collider (FCC) is the project destined to succed the Large Hadron Collider at CERN. p-p collision at 100 TeV of mass energy (instead of 14 TeV LHC)



5



6

### **Future Collider (FCC)**

The Future Collider (FCC) is the project destined to succed the Large Hadron Collider at CERN. p-p collision at 100 TeV of mass energy (instead of 14 TeV LHC)





The proposal calorimeter consists of steel and lead absorbers, and of plastic scintillator tiles as the active material.



7

## My Goal:

### SiPM calibration for the measurement of the absolute light yield of scintillator: #γ/MeV



8

#### **Experimental setup to measure #photons/MeV**

All components of the general setup are shown:

• Radioactive source:  ${}^{90}Sr$ 





9

#### **Experimental setup to measure #photons/MeV**

- Radioactive source:  ${}^{90}Sr$
- TileCal Scintillator





10

#### Experimental setup to measure #photons/MeV

- Radioactive source:  ${}^{90}Sr$
- TileCal Scintillator
- Silicon Photomultiplier (SiPM)





#### Experimental setup to measure #photons/MeV

- Radioactive source:  ${}^{90}Sr$
- TileCal Scintillator
- Silicon Photomultiplier (SiPM)
- 3 scintililating fibers





12

#### Experimental setup to measure #photons/MeV

- Radioactive source:  ${}^{90}Sr$
- TileCal Scintillator
- Silicon Photomultiplier (SiPM)
- 3 scintililating fibers
- Photomultiplier tubes (PMT)





13

#### Experimental setup to measure #photons/MeV

- Radioactive source:  ${}^{90}Sr$
- TileCal Scintillator
- Silicon Photomultiplier (SiPM)
- 3 scintililating fibers
- Photomultiplier tubes (PMT)
- Amplifier, Discriminator, Coincidence





14

#### Experimental setup to measure #photons/MeV

- Radioactive source:  ${}^{90}Sr$
- TileCal Scintillator
- Silicon Photomultiplier (SiPM)
- 3 scintililating fibers
- Photomultiplier tubes (PMT)
- Amplifier, Discriminator, Coincidence
- Multichannel Analyzer (MCA)





15

### Silicon Photomultipliers

Semiconductor-based photosensors with very fast time response properties and singlephoton resolution capabilities.







16

### **SiPM Calibration**

$$N_{photons} = \frac{S - Pedestal}{\varepsilon_{geom} \varepsilon_{coll} \varepsilon_{trans} \varepsilon_{PD}} \times \frac{1}{p_0}$$

From measurement:



17

### **SiPM Calibration**

$$N_{photons} = \frac{S - Pedestal}{\varepsilon_{geom} \varepsilon_{coll} \varepsilon_{trans} \varepsilon_{PD}} \times \frac{1}{p_0}$$

From simulation:

- $\triangleright \epsilon_{geom}$ : geometrical efficiency
- $\triangleright$   $\varepsilon_{coll}$ : collection efficiency
- $\triangleright \epsilon_{trans}$ : transmission efficiency

Characteristics of the instrument:  $\epsilon_{PD}$  =photo detection efficiency



18

1025

82.99 57.61

1025 82.99 57.61

#### Pulse-height spectrum at different positions of the radioactive source



x=16400





19

#### Pulse-height spectrum at different positions of the radioactive source



x=7400

x=11400



20

### **SiPM Calibration**





21

### **SiPM Calibration**





22

### **SiPM Calibration**

The obtained result of the converting factor  $p_0$  is

$$p_0 = 33.647 \pm 0.007 \frac{ADC}{\#\gamma}$$



23

### Conclusions

Obtained signal spectrum with Multi Channel Analyzer (MCA)

Developed an analysis code of the MCA spectrum, plotted and fitted the spectrum

► Obtained Calibration Signal  $\rightarrow #\gamma$ 



24

# Thanks for the attention!

