Study of central and exclusive production of tau-tau pairs in LHC

Supervisors: Matteo Pisano, Michele Gallinaro

Interns: Alexandre André, Manuel Ratola, Pedro Batista

LHC-LARGE HADRON COLLIDER

CMS- COMPACT MUON SOLENOID

- CMS is a detector in CERN.
- Some experiments done at CMS: study Higgs Boson, exclusive processes and aspects of heavy ion collisions.

PPS- PRECISION PROTON SPECTROMETER

• Responsible for Proton Detection emitted with low angle

PROTON-PROTON COLLISIONS

- In IP5 the protons collide → this means that 2 quarks interact and the 4 remaining quarks originate jets in the final state.
- In our analysis we study exclusive processes characterized by undissociated protons. Because of this, there are no extra free quarks.
- The process that we study is the central exclusive production of tautau pairs.
- In the final state we have 3 main backgrounds: Ttjets, Drell-Yan and QCD.

DATA PROCESSING

- Simulated data
- Triggers: HLT_lsoMu24_v HLT_Ele32_WPTight_Gsf_v
- Skimmings

	Signal	QCD	DY	ttjets		Weights
#events tau and muon	9,371	265671	76926	13199	ttjets	0,125
#events tau and muon (opposite charge)	9,213	56908	74127	12402	DY	0,817
#events Pt(tau)>100Gev; Pt(muon)>35Gev	4,383	2550	1309	2027	Signal	0,00157
η <2.4	4,352	2403	1288	2013	QCD	1,000

SKIMMING RESULTS

SKIMMING RESULTS

Momentum

CONTROL REGIONS

• Ttjets background – 56.65%

Acoplanarity of the central system

 $b jets \ge 1$ and $aco \ge 0.35$

CONTROL REGIONS

• Drell-Yan background – 79.14%

Acoplanarity of the central system

Invariant mass of the central system

 $M_t \leq 100 \text{ GeV}$ and $aco \leq 0.35$

CONTROL REGIONS

Acoplanarity of the central system

• QCD background - 91,38%

Invariant mass of the central system

 $M_t \ge 300 \text{ GeV} \text{ and } b \text{ jets} < 1$

PROTON ENRICHMENT

Invariant mass of the central system:

$$M_t = \sqrt{S * \xi_1 * \xi_2}$$

Momentum lost by the protons:

$$\xi = \frac{|P_{t,i}| - |P_{t,f}|}{|P_{t,i}|}$$

Initial energy of the protons:

$$\sqrt{S} = 13000 \text{ GeV}$$

MULTIVARIATE ANALYSIS

MULTIVARIATE ANALYSIS, WHY?

After skimming we still don't have a good separation between signal and background

A more sophisticated technique is needed to separate the background from the signal: multivariate analysis

MULTIVARIATE ANALYSIS, HOW?

The idea is to consider variables that are very different between signal and background, like the acoplanarity:

MULTIVARIATE ANALYSIS, HOW?

- We tested two MVA methods: MLP and BDT (Boosted Decision Trees)
- BTW showed a higher performance

MULTIVARIATE ANALYSIS, HOW?

- The TMVA (Multivariate Analysis Tool) considers all these discriminant distributions and creates a new one called test statistic
- This distributions will be used as input of Higgs Combined to derive a limite on the cross section

QCD

ttjets

Drell-Yell

Kolmogorov-Smirnov test: signal (background) probability = 0.612 (0.935)

Signal (test sample)

-0.8

Background (test sample)

Signal (training sample)

0.2

Background (training sample)_

CROSS SECTION

- Higgs Combine is a tool that receive as input the output of the BDT.
- Higgs Combine sums the 3 different backgrounds from the test statistics and permits to calculate de signal strength, $r=100^{+200}_{-60}$ (value calculated for the MuTau channel)

QCD

ttjets

Drell-Yell

0.6

IN CONCLUSION

In this project we went through this steps:

- Data processing
- Data verification
- Multivariate analysis
- Derivate the limit of the cross section

What we learned:

- More about particle physics in general
- How to treat data using advanced tools
- Machine learning
- More about CMS and PPS detector