Investigating the Flavour Anomalies

Manuel Abreu, Sónia D'Azevedo

Supervisors: Alessio Boletti, Nuno Leonardo

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Flavour Anomalies

- The Standard Model (SM) has been very successful, but there are shortcomings: gravity, neutrino oscillations, matter-antimatter asymmetry, ...
- Search for New Physics: directly or indirectly
- Lepton flavour universality (LFU) In the SM, leptons have identical couplings from one generation to the next (electron, muon, tau)
- Beyond-SM scenarios may result in violations in the LFU principle
- In this work we are interested in b \rightarrow sll decays, namely $B \rightarrow K \mu^+ \mu^-$
- In the SM, the LFU observable $R = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)} \approx 1$
- $\mathcal{B}(B \to K\mu^+\mu^-)$ is the Branching Fraction of $B \to K\mu^+\mu^-$ decay

Flavour Anomalies

 Individual measurements of *R* are inconsistent with SM by a few σ

- When combined with angular analysis of $b \rightarrow sll$ decays, the significance in the deviation increases above 5σ
- Possible NP explanations: new bosons, leptoquarks

3

The Project

- Decay we're studying: $B^0 \to K^{*0}\mu^+\mu^- \to K^+\pi^-\mu^+\mu^-$
- Measure the differential branching fraction

$$\frac{d\mathscr{B}(B^0 \to K^{*0}\mu^+\mu^-)}{dq^2} = \frac{Y_S}{Y_N} \frac{\epsilon_N}{\epsilon_S} \frac{\mathscr{B}(B^0 \to K^{*0}J/\psi)}{\Delta q_i^2}$$

- Y_S (signal Yield) and Y_N (normalization Yield) are both obtained from fits to the B⁰ mass spectrum
- ϵ_S (signal efficiency) and ϵ_N (normalization efficiency) are both obtained from Monte Carlo simulations
- Normalization channel is known:
 - $\mathcal{B}(B^0 \to K^{*0} J/\psi) = (7.5 \pm 0.3) \times 10^{-5}$

CMS (Compact Muon Solenoid)

- Particle detector at LHC. It's for multiple search purposes, that may include a lot of physics projects
- It's composed by many different systems, being able to detect many different particles
- We are interested in muons and hadronic tracks
 - Data from 2016 2018, collected by CMS experiment with a total integrated luminosity of 139.5 fb^{-1} , $\sqrt{s} = 13 TeV$

The q² dependences

- Data divided in bins of the di-muon invariant mass squared (q²)
- Different NP scenarios can affect different q² regions
- $B^0 \rightarrow J/\psi K^{*0}$ is used as the normalization channel
- $B^0 \rightarrow \psi(2S) K^{*0}$ is used as the control channel

Bin index	q ² range [GeV ²]
0	1-2
1	2-4.3
2	4.3-6
3	6-8.68
4 <i>J/ψ</i>	8.68-10.09
5	10.09-12.86
6 ψ(2S)	12.86-14.18
7	14.18-16

Flavour assignment

• $B^0 \to K^{*0} \mu^+ \mu^- \to K^+ \pi^- \mu^+ \mu^-$

7

- Both $B^0 \to K^+\pi^-\mu^+\mu^-$ and $\overline{B}{}^0 \to K^-\pi^+\mu^+\mu^$ decays occur
- Compute K^{*0} mass with $K^+\pi^-$ and with $K^-\pi^+$
- Event tagging: the combination closest to K^{*0} mass will be associated to the event
- A fraction of events can be wrongly tagged
- In Monte Carlo (MC) simulations we studied correctly tagged (RT) and wrongly tagged (WT) events separately

Fitting the mass distribution

- The signal yields are extracted performing a maximum likelihood fit
- Fits steps:
 - Fit RT in MC
 - Fit WT in MC
 - Fit the data, using signal MC-derived shapes
- Correctly tagged fit model:
 - q² bins 0-3: Double crystal ball
 - q² bins 4-6: Sum of two crystal ball functions
 - q² bin 7: Sum of one crystal ball with one gaussian
- Wrongly tagged fit model:
 - A double crystal ball function
- Wrongly tagged component has wider shape

Fitting the Data

- Finally, we fit the B^o candidate invariantmass distribution in data
- The function used in the fit has three componentes:
 - Correctly tagged (from the RT Monte Carlo fits)
 - Wronlgy tagged (from the WT Monte Carlo fits)
 - Background function (exponential)

Yields are extrated from the fit

Fitting the data in each q2 bin

10

Efficiencies

- Efficiencies are determined from MC samples
- Fraction of events that pass the detector acceptance and analysis selection
- Efficiencies are determined for each q2 bin

Differential Branching Fraction

- Differential Branching Fraction for each q² region is finally computed puting together all ingredients
- **Uncertanties:** ٠

Summary

• Flavour Anomalies are very strong candidate to search for New Physics

- We study the $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay:
 - Extract the yields from fits to the B^o mass spectrum in data
 - Get the efficiencies from the Monte Carlo simulations
- We calculate the Differential Branching Fraction
- We now have $\mathcal{B}(B \to K\mu^+\mu^-)$. This result is:
 - Sensitive to BSM and na input for the Flavour Anomalies global fits
 - The numerator of the LFU R ratio

Crystal Ball

Simple Crystal Ball Function:

$$f(x;lpha,n,ar{x},\sigma)=N\cdot egin{cases} \exp(-rac{(x-ar{x})^2}{2\sigma^2}), & ext{for } rac{x-ar{x}}{\sigma}>-lpha\ A\cdot(B-rac{x-ar{x}}{\sigma})^{-n}, & ext{for } rac{x-ar{x}}{\sigma}\leqslant-lpha \end{cases}$$

Why does efficiency change with the q²bins?

- Higher q² increases the chances that all four particles are within the detector geometrical acceptance
- In the q² bins close to the resonances, we have to do some cleaning for the events that come from the resonant decays, and this reduce a little bit the signal efficiency.

Previous Results

Bibliography

- <u>https://espace.cern.ch/CMS-</u>
 <u>LIP/INTERNSHIP/SUMMER2021/ANOMALIES/INTRO%20MATERIAL/BKMM_DIFF_BF_13TEV_ERD_MEE</u>
 <u>TING.PDF</u>
- <u>https://espace.cern.ch/cms-</u> <u>lip/internship/summer2021/Presentations/anomalies_cms_20210806.pdf</u>