Probing Quark Gluon Plasma using B Mesons

- Measurement of B+ and Bs meson production in pp collisions at 5 TeV with CMS at the LHC -

Jean Luo, Simao Costa Supervision: N. Leonardo, H. Legoinha

6th LIP Internship Program, Final Workshop, 9th September 2022

Quark-Gluon Plasma (QGP)

- A state of matter that only exists under extreme conditions (very high temperature/density)

- Quarks and gluons become 'free' instead of being bound together into hadrons

- Believed to have existed just after the Big Bang ($\lesssim 1~\mu s$) and inside neutron stars

- Can be reproduced in heavy ion collisions at LHC

Phase diagram of QGP (Source: CEA)

Heavy ion collisions

Aim to study the **hadronisation process** of quarks & **the effect of presence of QGP** on the process

Compact Muon Solenoid (CMS)

- A general-purpose particle physics detector at the LHC

- designed to study pp collisions and also with unique capabilities to study heavy ion collisions

- heavy ion collisions normally take place towards the end of the year, upcoming this November!

The analysis is based on the pp 5 TeV dataset collected by CMS in 2017

B mesons, probe of QGP

- Formed from hadronisation of b quarks
- We explore the following B^o_s and B⁺ decay channels:

 $\begin{array}{l} B^0_S \rightarrow J/\psi \, \varphi \rightarrow \mu^+ \mu^- K^+ K^- \\ B^+ \rightarrow J/\psi \ K^+ \rightarrow \mu^+ \mu^- K^+ \end{array}$

- Detect and measure particles at the end of the decay chain
 <u>Why B mesons?</u>
- Longer life time
 larger displacement
 can be distinguished
- **Massive** enough

 Negligible thermal production

Particle	Symbol	Composition	Charge
Charged B meson	B ⁺	ub	+1
Neutral B meson	B ₀	dĐ	0
Strange B meson	B ⁰ _S	sb	0
Charmed B meson	$\mathbf{B}_{\boldsymbol{C}}^+$	cb	+1

Differential Cross Section

$$\frac{d\sigma}{dy} = \frac{1}{\epsilon LB} \frac{dN_S}{dy}$$

 σ : Cross section

 ϵ : Efficiency x Acceptance of the detector (obtained from MC simulation)

L: luminosity ($L = 302.3 \text{ pb}^{-1}$)

B: Branching fraction of B meson decay (from PDG)

N_S: Signal Yield (number of signal events obtained from fit to data)

Fitting the data: **B**^o_s

(Fit using Extended Unbinned Maximum Likelihood method)

Fit to Monte Carlo (MC)

 $l(m) = N_s \left(\alpha \cdot \text{gauss}_1(m; \mu, \sigma_1) + (1 - \alpha) \cdot \text{gauss}_2(m; \mu, \sigma_2) \right)$

Fit to data

Nominal Model = Signal (Double gaussian) + **Background** (Exponential): $l(m) = N_s(\alpha \cdot \text{gauss}_1(m; \mu, s \cdot \sigma_1) + (1 - \alpha) \cdot \text{gauss}_2(m; \mu, s \cdot \sigma_2)) + N_B \exp(\lambda m)$

90 CMS Preliminary pp 5.02 TeV(302.3 pb ⁻¹ Signal + Background 0.0 < y < 0.5 χ^2 value : 1.18 -s 70 AeV/c²) lambda5 = -1.7306 +/- 0.174 60 mean5 = 5.368038 +/- 0.000801 Signal nbkg5 = 457.1 +/- 22.1 rents / (10 nsig5 = 151.9 +/- 13.6 40 scale = 0.7790 +/- 0.0752 30 Background Zoomed on the peak Pull Fitting range (5-6 GeV) 5.2 5.4 5.6 5.8 $m_{J/\psi K^{+}K^{-}}$ (GeV/c²)

lambda: exponential decay constant of the background (λ)

mean: the position of the peak (μ)

nsig: number of signal events in data (N_S)

nbkg: number of background events in data Scale: The ratio of the width of the peak compared to that of the Monte Carlo simulation (N_B)

scale: the factor before the width of the peak
(s)

 $\chi^{\rm 2}$ Value (normalised): Quality of the fit test result

Binning of Rapidity and Multiplicity

Boundaries of bins: {-2.4, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.4}

Boundaries of bins: {0, 20, 30, 40, 50, 60, 70, 100}

Next, we perform the fits in each of these bins

Nominal B⁰_S Mass Fit Results versus Rapidity

Nominal B⁰_S Mass Fit Results versus Multiplicity

Differential results

Fitting the data: **B**⁺

(Fit using Extended Unbinned Maximum Likelihood method)

 $\frac{d\sigma}{d(p_T, y, Mult)} = \frac{1}{\epsilon LB} \frac{dN_S}{d(p_T, y, Mult)}$

Yield Extraction (B⁺)

Nominal B⁺Mass Fit Results versus Rapidity

Nominal B⁺Mass Fit Results versus Multiplicity

Differential results

pp->B+X production cross section versus B mesons rapidity and event multiplicity

Systematic uncertainties

Systematic variations

Signal

Nominal signal model: Double Gaussian

Variations:

- Triple Gaussian
- Fixed mean
- CB + Gaussian
- Double CB (for testing)

Background

Nominal signal model: Exponential

Variations:

- Linear
- Second order polynomial
- Mass range

Background modeling variations

Linear

Second Order Polynomial

Mass range

(Examples from rapidity fits)

Triple Gaussian

Fixed mean

Crystal Ball + Gaussian

Double Crystal Ball

(Examples from rapidity fits)

Quality of fits

Signal Variations Fit Quality test

Background Variations Fit Quality test

Stability analysis

Mass Resolution (versus Rapidity)

The detector resolution is optimal in the central region (small |y|) and degrades towards the forward region (large |y|), as expected

Cross section Results

Computation of cross section

Cross section

Summary

Summary

- We have analysed the pp data collected by CMS at 5 TeV
- We have measured the differential production cross sections for B⁰ and B⁺ mesons
- As function of meson (y) and collision (mult) observables that had not been studied before
- Including detailed study of systematic uncertainties

The work also involved

- Implementing and carrying out a large number (~600) of fits to MC and data
- Verify their quality, via chi2 and pull calculations
- Verify parameter and resolution stability across bins

Next steps

- Finalize measurement of the cross sections for B^o and B⁺ mesons
- Compare our results with the theory prediction
- Use obtained results to determine:
 - Ratio of cross sections in pp collisions B_{s}^{o}/B^{+} (quark hadronisation process)
 - Ratio of cross sections in **pp and PbPb collisions**, $R_{AA} \propto \sigma_{PbPb} / \sigma_{pp}$ (properties of QGP)
- We have been reporting regularly at the CMS Heavy Ion working group meetings
- We are documenting our work on a CMS Analysis Note

Thank you for your attention!

Backup

Nuclear Modification Factor (R_{AA})

- PbPb: lead-lead collision
 producing QGP
 <u>pp: proton-proton collision</u>
 not producing QGP

Compare them

Unbinned Extended Maximum likelihood

$$\mathcal{L}(m_i, \vec{\lambda}) = \prod_{i=1}^N \ell(m_i) \times \frac{e^{-N_N N_{obs}}}{N_{obs}!}$$

C: model, a probability distribution function (pdf), (weighted) sum of a signal pdf (double gaussian) and a background (exponential) pdf

N: actual total number of total events

Nobs: estimated total number

 $\vec{\lambda}$: array of parameters

Fit quality test (normalised χ^2)

Rapidity

Multiplicity

Background systematics

Signal Systematics

Fit Quality test (Rapidity)

Fit Quality test (Multiplicity)

Resolution scale

Resolution scale (Rapidity)

Resolution scale (Multiplicity)

Mass Resolution (Multiplicity)

Mass Resolution

Rapidity

Multiplicity

Summary

y: 64 data fits + 40 MC fits mult: 56 data fits + 36 MC fits pt: 56 data fits + 36 MC fits

Now a total number of 288 fits for B_{S}^{0}

y: 64 data fits + 40 MC fits mult: 56 data fits + 36 MC fits pt: 56 data fits + 36 MC fits

Gave 12 talks:

6 in CMS Spectra and Heavy Flavour meeting: 21st July. 28th July, 4th August, 18th August, 25th August, 1st September6 in LIP CMS meetings: 27th July, 3rd August, 10th August, 17th August, 23rd August, 31th August