

Using Big Data to Study Geographical Variation in Antibiotic Prescription

SPEAKER:

ARMANDO GONÇALVES

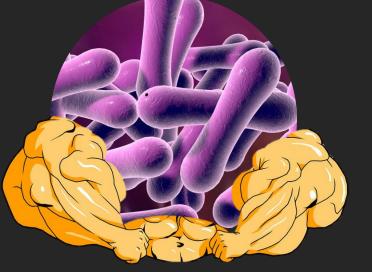
MENTORS:

IRMA VARELA, SARA MESQUITA



### Bacterial resistance















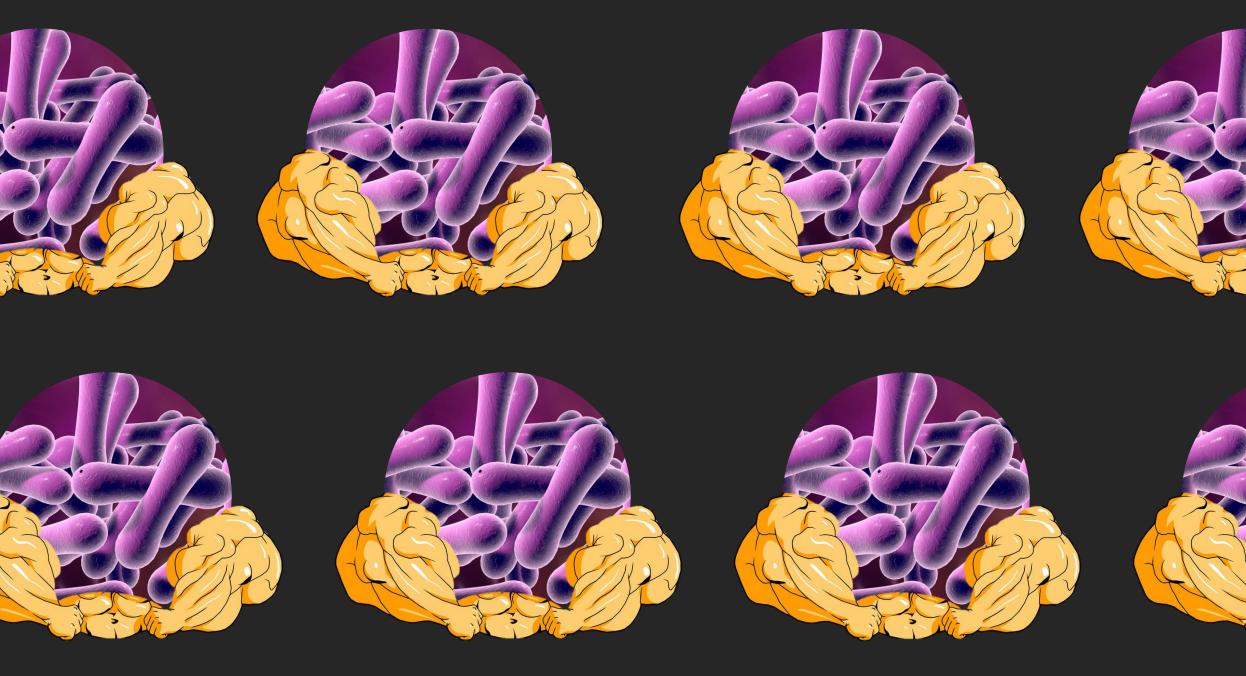












L.



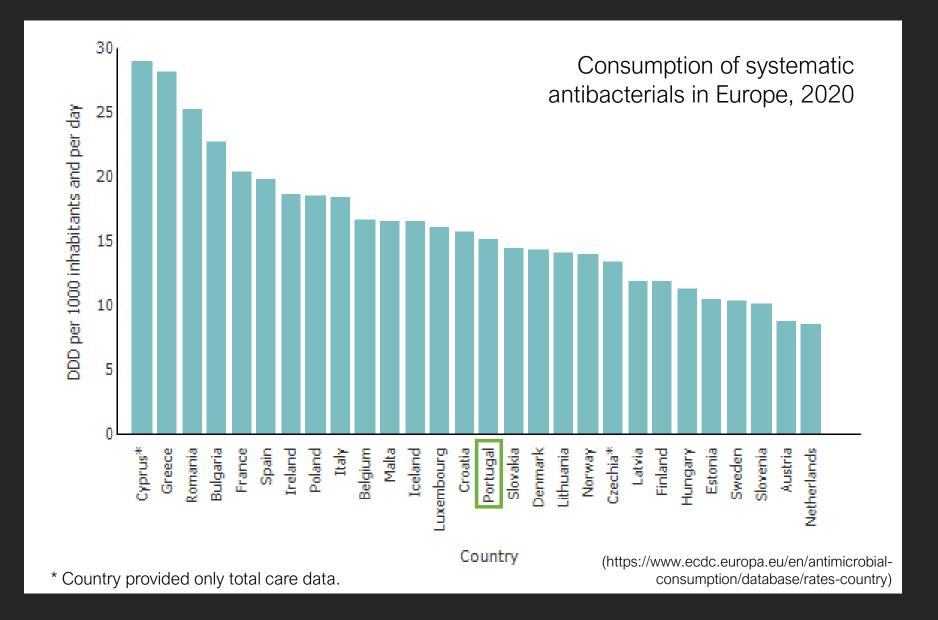
Are there any **geographic** differences in antibiotic prescriptions in Portugal?

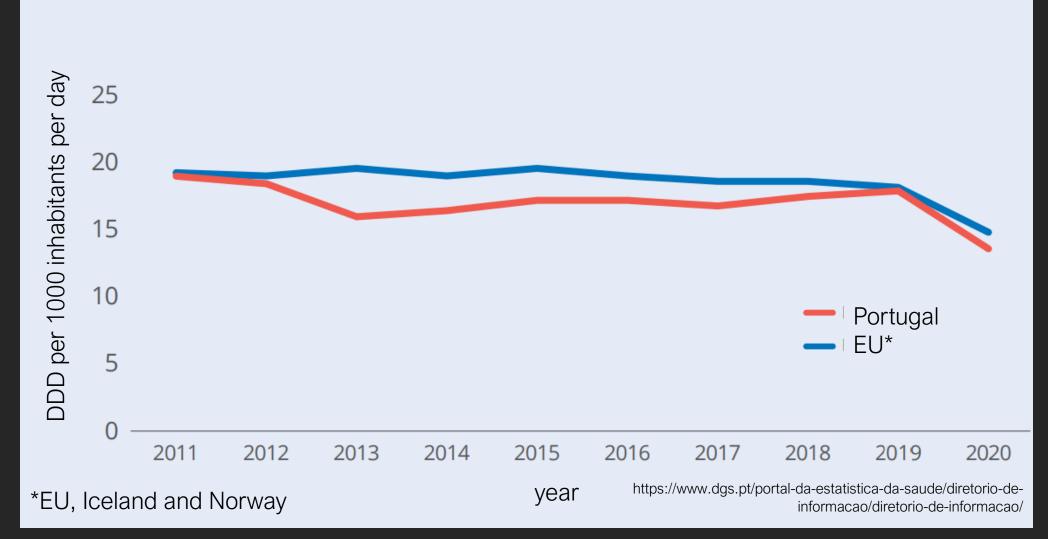
If there are indeed geographic differences, can we give it a **meaning**?



### II.







#### Average antibiotics consumption in Portugal and EU\*

### III.

### The database

#### What does the database contain?

#### Medical prescriptions!

#### Lots and lots of prescriptions!...

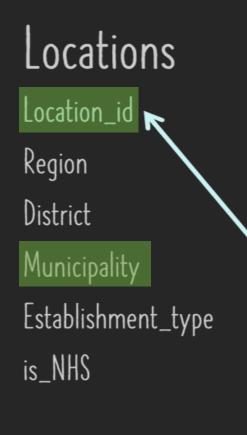
https://www.spms.min-saude.pt



#### https://pem.min-saude.pt



All Portugal's medical prescriptions from 2017 to 2019 in one place...



Prescriptions Table\_id Prescription\_id Presc\_date Presc\_time Location\_id Patient\_id Patient\_gender Patient\_age

Active substance Dosage form Dosage Package type Posology Quantity Prescriber\_id 🖌 Speciality

Prescriber\_id Precriber\_yob Prescriber\_gender



|            | location_id                   | region                 | district | municipality               | establishment_                      | _type | is_sns     | service_type |  |
|------------|-------------------------------|------------------------|----------|----------------------------|-------------------------------------|-------|------------|--------------|--|
| A95B17     | 2DF70598CF4328BC19232424A7V01 | Lisboa<br>Vale<br>Tejo | Lisboa   | Vila Franca<br>de Xira     | ACES-U<br>Unid.Cuid.S<br>Personaliz | Saúde | 1          | None         |  |
| 578345     | 5EABBB031808C10F9C88B7CA28V01 | Lisboa<br>Vale<br>Tejo | Lisboa   | None                       | ACES-U<br>Unid.Cuid.S<br>Personaliz | Saúde | 1          | None         |  |
| 83C3E2     | 56FA9F1A8BCB6DEBA4476B5624V01 | Lisboa<br>Vale<br>Tejo | Lisboa   | Vila Franca<br>de Xira     | ACES-U<br>Unid.Cuid.S<br>Personaliz | Saúde | 1          | None         |  |
| 01D318     | 854A0A3094F791949124          | SQL Server             | Managem  | ent Studio 🛛 🗙             | ACES-<br>Unid.Saude Pu              |       | 1          | None         |  |
| _          | 📕 🛛 🔀 Fi                      |                        |          | File is too large to open. |                                     |       | ACES-UCSP- |              |  |
| atient_nid | patient_gender p              |                        |          |                            | substance                           | pres  | c_date     | e presc_tim  |  |
| 698959     | F                             |                        |          | ОК                         | urosemida                           | 2019  | 9-12-31    | 10:46:4      |  |
| 698959     | F                             | 83 Br                  | ometo d  | e aclidínio +              | Formoterol                          | 2019  | 9-12-31    | I 10:46:4    |  |
| 698959     | F                             | 83                     | Amoxici  | lina + Ácido               | clavulânico                         | 2019  | 9-12-31    | I 10:47:4    |  |
| 2627842    | М                             | 71                     |          | F                          | Pentoxifilina                       | 2019  | 9-12-31    | 09:47:0      |  |
| 2627842    | М                             | 71                     |          |                            | Clonazepam                          |       | 9-12-31    | 09:47:0      |  |

Δ

## IV.

### The work done



```
PGHOST = 'localhost'
       PGDB = 'pem' #
       PGUSER = 'armando'
       password = 🤤
       PGPASSWORD = password
       print('Postgres password: ' + password)
                                                                                                                                                   Python
                                                                                         60LAlchemy
       dbconfig = {
           'port':5432,
           'host':PGHOST,
           'database': PGDB,
           'user': PGUSER,
           'password': PGPASSWORD,
                                                                                                                                                   Python
\triangleright ~
       engine = db.create_engine('postgresql://',connect_args = dbconfig)
                                                                                                                                                   Python
       connection = engine.connect()
       Session = sessionmaker(bind=engine)
       session = Session()
                                                                                                                                                   Python
                                                                                                                                  \triangleright
                                     Storing
     Extraction
                                       data
                      Table('_ocat:
                                                   load=Tr re, autoload with=engine)
                      ns location i
```

## pandas

dummy = Dados 2017.loc[:, ((Dados 2017.columns != 'municipality') & (Dados 2017.columns !

coco1 = dummy[['patient gender', 'AgeGroup', 'TOTpatients']].groupby(['patient gender', 'AgeGroup', 'A

cocol.rename(columns = {'TOTpatients':'#TpatientsC'}, inplace = True)#the count was stored in patient nid, let's change its name then

[38]

 $\triangleright$  ~

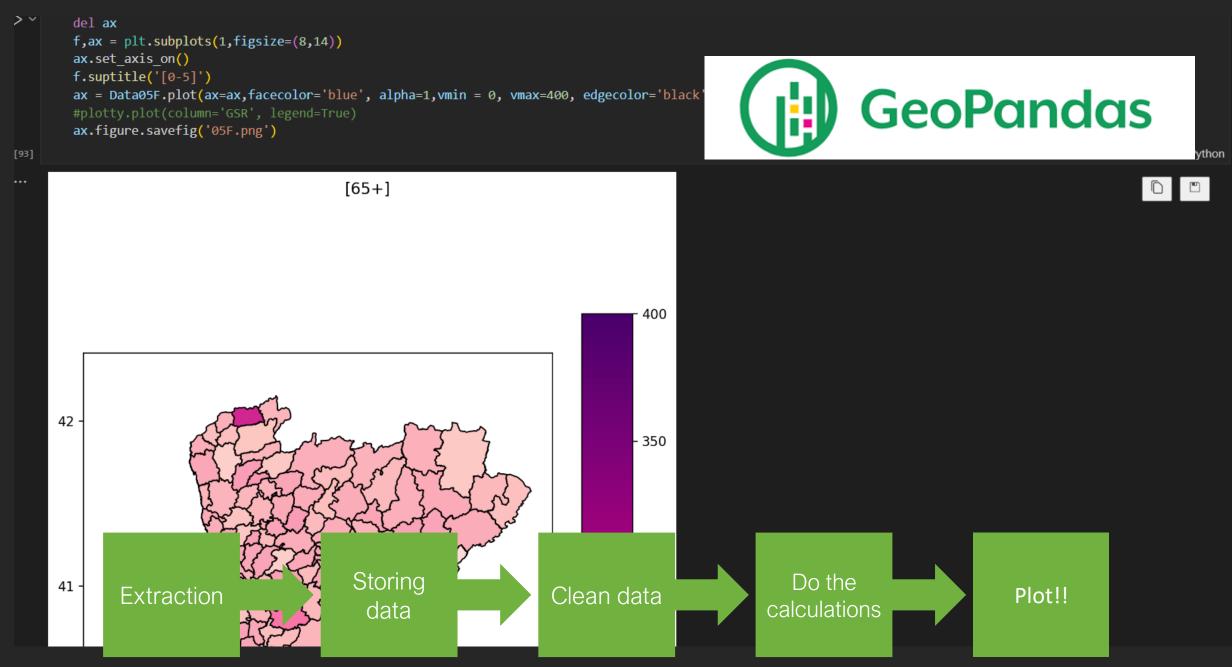
|      | patient_gender | AgeGroup | municipality | #Ab_prescriptions       | #non_Ab_prescriptions | TOTpatients | <pre>#patient_non_AB</pre> | <pre>#patient_AB</pre> | metrics    |
|------|----------------|----------|--------------|-------------------------|-----------------------|-------------|----------------------------|------------------------|------------|
| 119  | F              | [0-5]    | Lisboa       | 47147.0                 | 128709.0              | 53548       | 40633                      | 27103.0                | 131.999514 |
| 424  | F              | [6-12]   | Lisboa       | 23282.0                 | 83303.0               | 41447       | 31818                      | 15811.0                | 113.042232 |
| 729  | F              | [13-17]  | Lisboa       | 15227.0                 | 72067.0               | 30881       | 24683                      | 10458.0                | 116.378377 |
| 1034 | F              | [18-24]  | Lisboa       | 34603.0                 | 135880.0              | 58084       | 45079                      | 23535.0                | 114.108319 |
| 1339 | F              | [25-34]  | Lisboa       | 62098.0                 | 310009.0              | 107320      | 87546                      | 42024.0                | 120.541299 |
| 1644 | F              | [35-44]  | Lisboa       | 80518.0                 | 487812.0              | 146111      | 123304                     | 53168.0                | 127.801781 |
| 1949 | F              | [45-54]  | Lisboa       | 66352.0                 | 523443.0              | 136820      | 119218                     | 43122.0                | 134.074865 |
| 2254 |                | [55-64]  |              | 4433.0                  |                       | 136953      |                            | 40493.0                | 142.424122 |
| 2559 |                | [65+]    | Sto          | 0160.0                  |                       | 275-118     | Do tho                     | 86068 3                | 157.325232 |
| 2864 | Extraction     | า        |              | oring                   | Clean data            | a           | Do the                     |                        | 136.468540 |
| 3169 |                | [6-12]   |              | ata <sub>2794.0</sub> , |                       | 47. /5      | calculatior                | 1S 16007 J             | 114.422130 |
| 3474 |                | [13-17]  |              | 3243.0                  |                       | 29001       |                            | 9218.0                 | 114.888062 |

#### Dados\_2017 = pd.read\_csv('df\_merged\_2017.csv')

#parse dates=['date'], Dados\_2017["metrics"] = ((((Dados\_2017['#Ab\_prescriptions']\*100)/Dados\_2017['#patient\_AB'

Python

riptions



Are there any **geographic** differences in antibiotic prescriptions?

## If there are indeed geographic differences, can we give it a **meaning**?

### V.

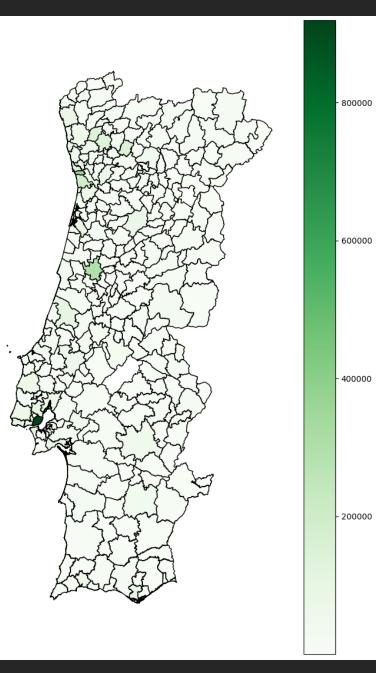
## Methods and results





# number of antibiotic prescriptions in the municipality

|    | Name                                    | Population |
|----|-----------------------------------------|------------|
| 1  | <u>Lisbon</u> <sup>(1)</sup> , Lisbon   | 517,802    |
| 2  | <u>Porto</u> <sup>(1)</sup> , Porto     | 249,633    |
| 3  | Amadora <sup>(1)</sup> , Lisbon         | 178,858    |
| 4  | <u>Braga</u> 🤍, Braga                   | 121,394    |
| 5  | Setúbal 🧶, District of Setúbal          | 117,110    |
| 6  | <u>Coimbra</u> <sup>(3)</sup> , Coimbra | 106,582    |
| 7  | <u>Queluz</u> <sup>(1)</sup> , Lisbon   | 103,399    |
| 8  | <u>Funchal</u> 🧐, Madeira               | 100,847    |
| 9  | <u>Cacém</u> <sup>(1)</sup> , Lisbon    | 93,982     |
| 10 | <u>Vila Nova de Gaia</u> 🍥, Porto       | 70,811     |
| 11 | <u>Algueirão</u> , Lisbon               | 66,250     |
| 12 | Loures <sup>(3)</sup> , Lisbon          | 66,231     |

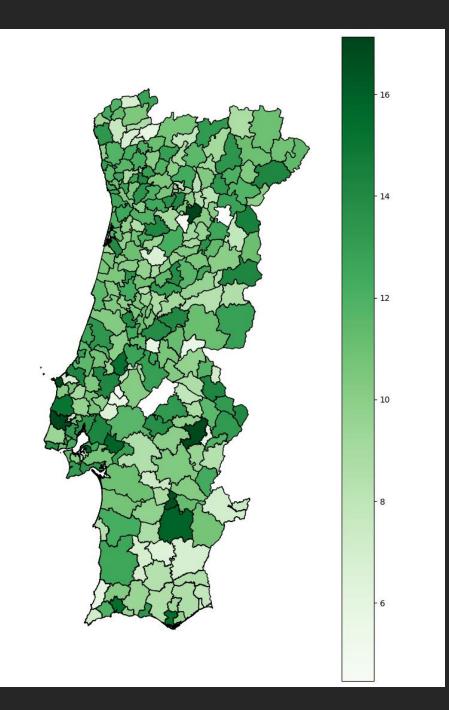




#### Metrics #2:

# number of antibiotic prescriptions in the municipality \* 100

# TOTAL number of prescriptions in the municipality

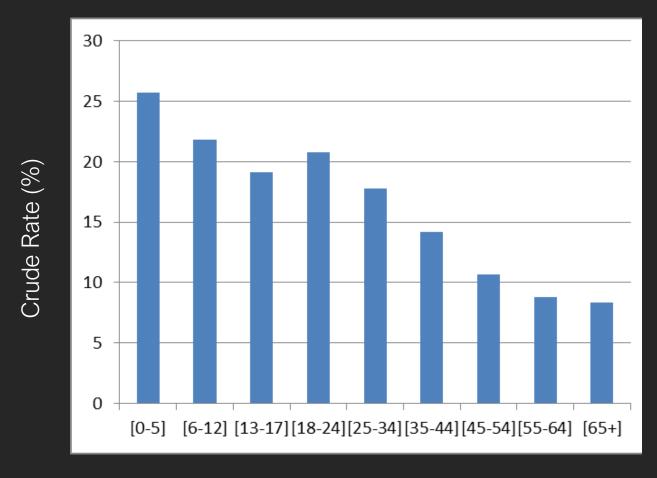


Metrics #2.1:

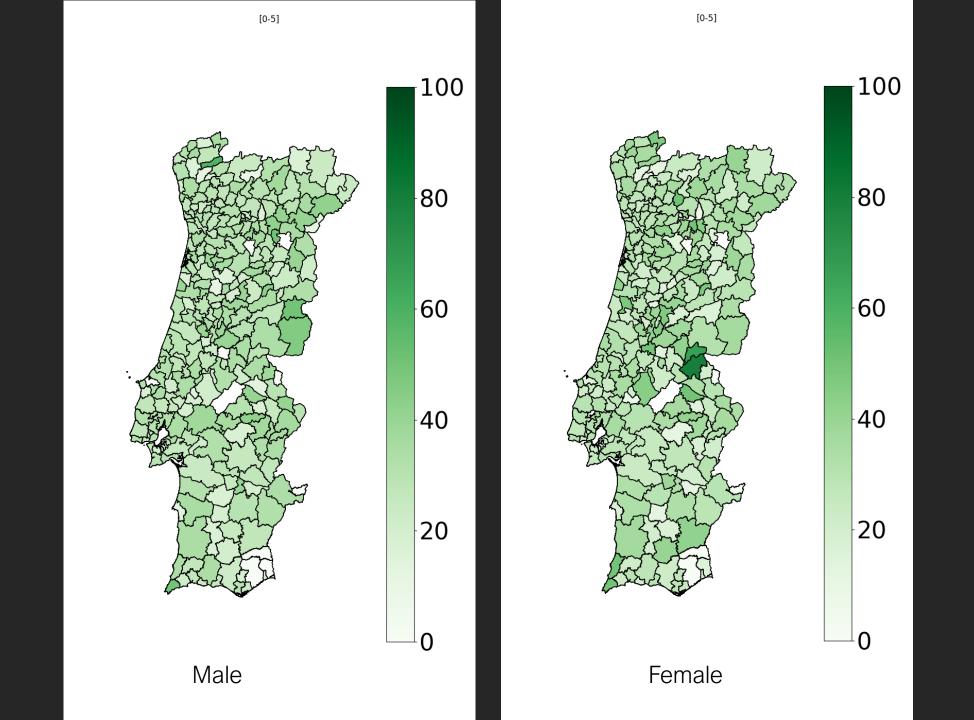
number of antibiotic prescriptions in the municipality for specific age and sex \* 100

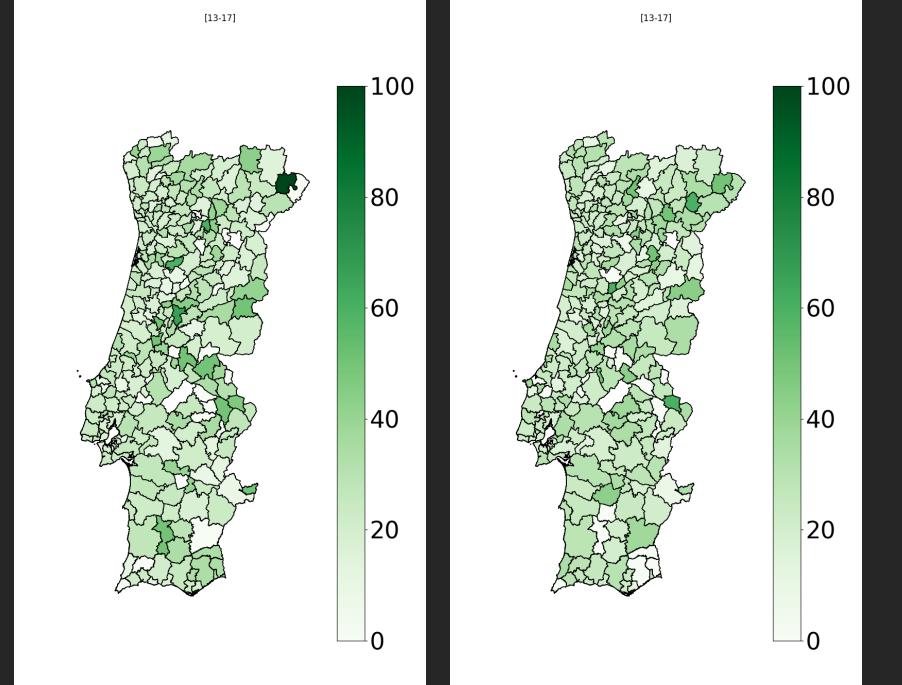
TOTAL number of prescriptions in the municipality for specific age and sex

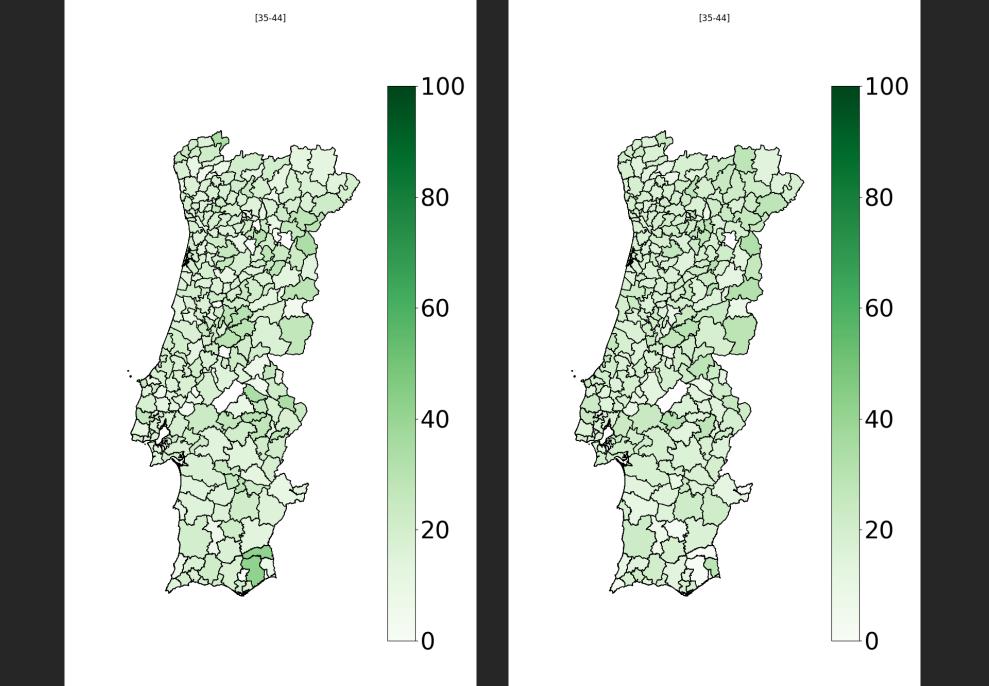
#### Age Group vs Crude Rate

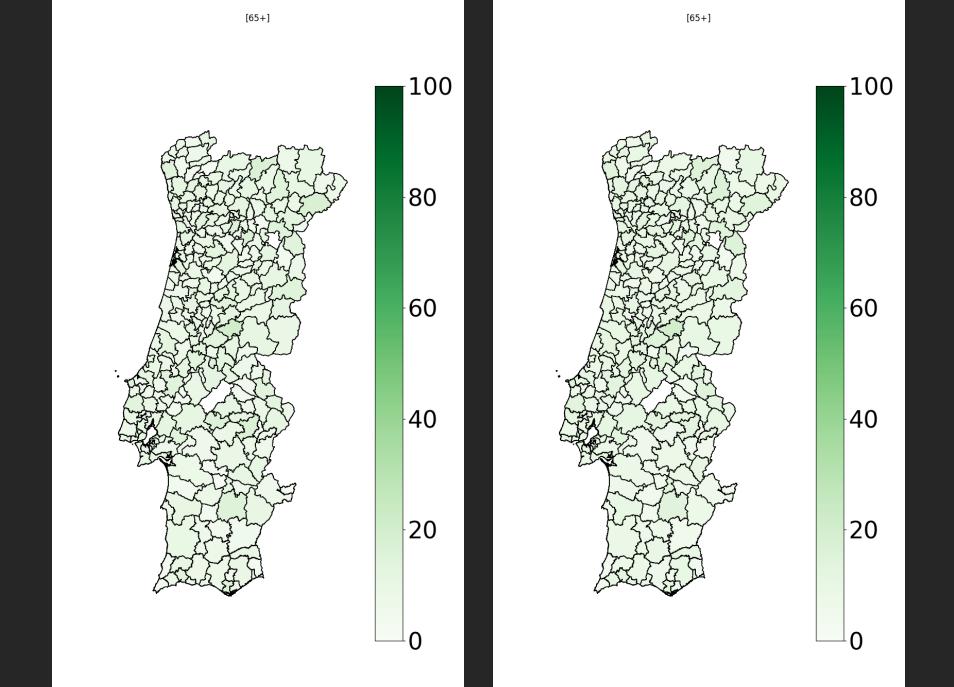


Age Group



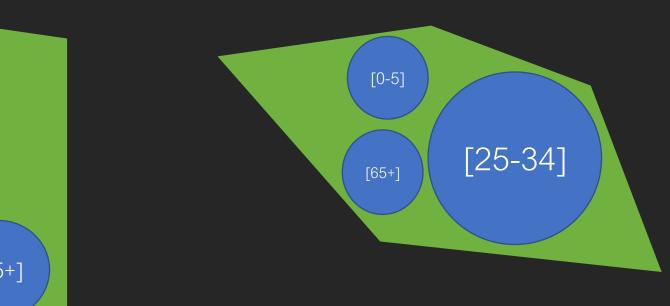


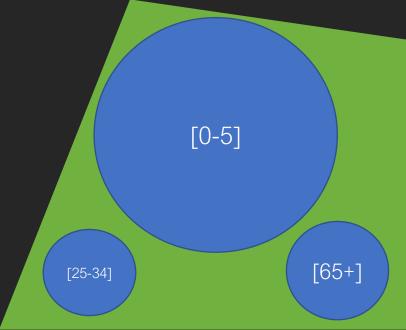




#### Metrics #3:

# The final goal would be to standardize the metrics...





Municipality B

Municipality A

#### We would still need to normalize it!



### Discussion

To calculate the standard population in the usual way we would take the number of people in every municipality by age group and gender...

...the issue was we discovered the number of patients outsmarts the Census population

WHY? Possible reasons:

Random errors when inserting the data in the platforms?....

Random errors when dealing with the data?....

Patients that belong to more than one parameter (two genders, two age groups,...)

Patients that would go to different municipality hospitals?

Although the existence of this issue, we could still calculate a reasonable metrics with the number of visits, for example.

#### What do the data we have tell us?

- Younger people take more antibiotics
- To be able to do more comparisons, we would dig more the data



## Index

- . <u>Bacterial</u> <u>resistance</u>
- II. Portugal's case
- III. The data base
- IV. The work done
- V. Methods and results
- VI. <u>Discussion</u>

Social

Physics & Complexity