Basic elements of C++

Following the book:

* D.S. Malik, &++ Programming: From Problem Analysis to Program
Design

* Useful documentation: http://www.cplusplus.com/

P. Conde Muino C++ Programming 1

ol [
Frimm1s
“ i
I S |
=

Data types
Operators
Flow control

Arrays

Classes

Pointers
Standard library

¥ % ¥ ¥ X * ¥ ¥ %

User defined functions

Reading/writing files

Contents

P. Conde Muinio

C++ Programming

Data types

* Data type: set of values together with a set of operations

C++'s Data Types
|
| | |
Simple Structured Pointers
FIGURE 2-1 C++ data types
* Three categories of simple data — char
— short
Integers — int
. . — long
Floahng-pom’r: real numbers Integral Data Type bool
. _ . —— unsigned char
Enumeration type: user-defined | unsigned short
e igned int
data type e

— unsigned long

P. Conde Muino C++ Programming 3

Data types

TABLE 2-2 Values and Memory Allocation for Three Simple Data Types

int -21474836481t0 2147483647 4
bool true and false 1
char -128to0 127 1

% bool type: used to manipulate logical (Boolean) expressions
Two possible values: true, false
True, false: reserved words

* char: used for characters (smallest type)

IAI |a| IOI T %1 'I_I_'I |'$'I l&l‘

P. Conde Muifio C++ Programming 4

;§! i“ Data types

* Represent real numbers
Range: from -3.4E+38 to +3.4E+38 (four bytes)
Maximum number of significant digits: 6 or 7

* double: floating point of double precision
Range: -1.7E+308 to 1.7E+308 (eight bytes)
Maximum number of significant digits: 15

P. Conde Muino C++ Programming 5

;§! i“ Operators

* Operators + addition
- subtraction

* multiplication
Act on an expression to give / division
another expression % modulus operator

Binary or unary

*

All operations inside of () are evaluated first

* *,/,and % are at the same level of precedence and are evaluated
hext

#* +and - have the same level of precedence and are evaluated last
% When operators are on the same level - Performed from left to
right (associativity)
3 *7-6+2*5/ 4+ 6means
(((3 7)) —6) + ((2*5) /4)) +6

P. Conde Muino C++ Programming 6

!i“ Relational, logical, increment operators

% Relational operators * Logical operators
Operator Meaning
Operator Meaning

> Greater than

&& and
>= Greater than or equal to

|1 or
< Less than

! not
<= Less than or equal to
== Equal to Examples
= Not equal to

Assume x=6, y=2:

% Increment/decrement I (x > 2) — false
operators (x >y) & (y > 0) = true
(x < vy) && (y > 0) — false
++variable, variable++ (x <vy) || (y >0) — true

--variable, variable--

x = 5; x = 5;
y = ++x%x; y = X++;

P. Conde Muino C++ Programming 7

;§! i“ Ternary operator ?:

* Equivalent to:

1 if(a > b)

2 result = x;
3 else

4 result = y;

P. Conde Muino C++ Programming 8

E! i“ Expressions
L

* Statement: unit of code that does something - a basic building
block of a program.

% Expression: a statement that has a value
If all operands are integer: integer expressions
If all operands are float: floating point expression

If mixed: 2
Integer is changed to floating-point Example of
Operator is evaluated e 1mphc1t‘type
conversion

Result is floating-point

P. Conde Muino C++ Programming 9

E! i“ Type conversions & cast
L 1P

* Implicit type conversion:
When changing from smaller to larger types

* EXp“CiT Type conversion: static cast<dataTypeName> (expression)

Expression Evaluates to
static_cast<int>(7.9) 7
static_cast<int>(3.3) 3
static_cast<double> (25) 25.0

1 int x = (int)5.0; // float should be explicitly "cast" to int
2 short s = 3;
3 long 1 = s; // does not need explicit cast, but

4 // long 1 = (long)s is also valid
b float y = s + 3.4; // compiler implicitly converts s
6 // to float for addition

P. Conde Muino C++ Programming 10

E! i“ Variables and constants
LI P

* Named constant: memory location whose content can't change
during execution

const dataType identifier = wvalue;

const double CONVERSION = 2.54;

Examples const int NO OF STUDENTS = 20;
const char BLANK = ' ';

const double PAY RATE = 15.75;

% Variable: memory location whose content may change during

execution
dataType identifier, identifier, . . .;

int x; All variables must be 1nitialized before

using them, but not necessarily during
declaration

int x = 4 + 2;

P. Conde Muifio C++ Programming 11

!!i“ Examples

#include<iostream>

using namespace std;
int main()

{
int a = 3, b = 5;
cout << a << '+' << b << '=' << (a+b);
return 0;

#include <iostream>
using namespace std;

i
2
3
4
5 int main ()
6
T
8
9

{

int N;
Cout << "Enteay ¥: v
cin >> N:

10 int adcc = O

11

12 // handle the first number separately

13 cin >» accs:

14 int minVal = acc:

15 int maxVal = acc;

16

P. Conde Muifio C++ Programming 12

17 // then process the rest of the input
18 for(int i = 1; i < N; ++1i)

19 {

20 int a;

21 cin >> a;

22 acc += a;

23 if (a < minVal)

24 {

25 minVal = a;

26 +

27 if (a > maxVal)

28 {

29 maxVal = a;

30 }

31 }

32

33 cout << "Mean: " << (double)acc/N << "\n'";
34 cout << "Max: " << maxVal << "\n";

35 cout << "Min: " << minVal << "\n";

36 cout << "Range: " << (maxVal - minVal) << "\n";
37

38 return 0;

39 }

P. Conde Muinio

Examples II

C++ Programming

13

Input/Output statements

% Qutput: cout
Ex.: cout <<" The factorial of 5 is " << Factorial(5) << endl;

*

The stream insertion operator is <<

*

The expression is evaluated and its value is printed at the
current cursor position on the screen
* Input:
cin > X;
int YourChoice;

cout << "Choose a number between 1 and 15" << endl;
cin >> YourChoice;

Include file:

#include <iostream>

P. Conde Muifio C++ Programming 14

;!p Input/Output statements

cout << "Hello there.";

- MOdifier'S to Change The cout << "My name is James.";
 Output:
fOr'mGT Of The OUTPUT Hello there.My name is James.

cout << "Hello there.\n";
cout << "My name is James.";

TABLE 2-4 Commonly Used Escape Sequences » Qutput :
Hello there.
\n Newline Cursor moves to the beginning of the next line
\t Tab Cursor moves to the next tab stop
\b Backspace Cursor moves one space to the left
\r Return Ehirsr:xr:ﬁ:: to the beginning of the current line (not
\\ Backslash Backslash is printed
N Single quotation Single quotation mark is printed
gy b Double quotation Double quotation mark is printed

P. Conde Muino C++ Programming 15

;!p Input/Output statements

cout << "Hello there.";

- MOdifier'S to Change The cout << "My name is James.";
 Output:
fOr'mGT Of The OUTPUT Hello there.My name is James.

cout << "Hello there.\n";
cout << "My name is James.";

TABLE 2-4 Commonly Used Escape Sequences » Qutput :
Hello there.
\n Newline Cursor moves to the beginning of the next line
\t Tab Cursor moves to the next tab stop
\b Backspace Cursor moves one space to the left
\r Return Ehirsr:xr:ﬁ:: to the beginning of the current line (not
\\ Backslash Backslash is printed
N Single quotation Single quotation mark is printed
gy b Double quotation Double quotation mark is printed

P. Conde Muino C++ Programming 16

Pre-processor directives

*

C++ has a small number of operations

*

Many functions and symbols needed to run a

*

C++ program are provided as collection of libraries
Every library has a name and is referred to by a header file

% Preprocessor directives are commands supplied to the
preprocessor

% All preprocessor commands begin with #

*

No semicolon at the end of these commands!
% Syntax to include header files:

#include <iostream>
#include "myFunctions.h"

P. Conde Muino C++ Programming 17

Namespace
1 P

% Normal syntax

std::cout << " The factorial of 8 is " << Factorial(8) <<
std::endl;

#* std:: indicates that these commands belong to the standard
library

Will become more clear in next classes
% To avoid writing all the time std::
'U.SiIlg namespace Std_, Binclude <iostream>

using namespace std;
int main()
{

cout << "My first C++ program." << endl;

return 0;

}
P. Conde Muifio C++ Programming 10

E! i“ Exercise
L

* Worite a program that takes as input a given length expressed in
feet and inches

Convert and output the length in centimetres
* Help:

Inch = 2.54 cm

1 foot = 12 inches

P. Conde Muino C++ Programming 19

Flow Control

P. Conde Muinio

C++ Programming

20

E! i“ Control structures
LI P

% A computer can proceed:
In sequence
Selectively (branch) - making a choice
Repetitively (iteratively) - looping
* Some statements are executed only if certain conditions are
met
A condition is met if it evaluates to true

P. Conde Muino C++ Programming 21

R
statement1 l r

ralse—— true
statement? [—l —true W statement |
|

statement2 statementl false
'

statementN - ? .

a. Sequence b. Selection c. Repetition

.—-—I-— LI -I—I-I—I-—.

FIGURE 4-1 Flow of execution

P. Conde Muino C++ Programming

22

Eﬂ i“
!
L

if and if ... else

% One-Way Selection: | if (expression)

statement

=]

The statement is executed if the value of expression is true

If expression is false, the statement is not executed and the
program continues

int main()
{

int number, temp;

l cout << "Line 1: Enter an integer: "; //Line 1
cin >> number; //Line 2
, cout << endl; //Line 3
expression el e Statement

temp = number; //Line 4
false if (number < 0) //Line 5
l number = =-number; //Line 6

." cout << "Line 7: The absolute value of "
<< temp << " is " << number << endl; //Line 7

return 0;
}

P. Conde Muino C++ Programming 23

if and if ... else

* Two-Way Selection: if (expression)
statementl
else

statement?2

If expression is true, statementl is executed; otherwise,
statement? is executed

if (hours > 40.0)
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0);
false GO —— true else
{__ __1 wages = hours * rate;

P. Conde Muifio C++ Programming 24

#* Block of statements:

if (age >

{
GO
cont
}
else
{
COoOuEt
cout

% Multiple options

<<
<<

<<
<<

18]

"Eligible to vote." << endl;
"No longer a minor." << endl;

"Not eligible to vote." << endl;
"Still a minor." << endl;

if (score >= 90)
cout << "The grade
else if (score >= B0)
cout << "The grade
else if (score >= 70)
cout << "The grade
else if (score >= 60)
cout << "The grade
else
cout << "The grade

is

is

is

is

is

<<

<<

<<

<<

<<

endl;
endl;
endl;
endl;

endl;

P. Conde Muinio

C++ Programming

25

switch

% Alternative to a series of if... else | switch (expression) |
% The expression is evaluated. Depending on Lase el =
the value different statements will be Sbi;ae‘;i‘:e“tﬂ
executed case value2:
% More than one statement may follow i,iif?entsz

* Break may/may not appear

If it does not appear the following case valuen:

statements will be executed! statementsn
break;

default:
statements

|}

P. Conde Muino C++ Programming 26

EEEEEEE!!!i“n
[

* Flow diagram * Example:

. #include <stdio.h>
1

s
expression

! {

int Grade = 'B';
P - Exnm -

false switch(Grade)
{
Gasnah e e ,m,m_, case 'A' : printf("Excellent\n");
break;
’1” case 'B' : printf(“Good\n"):
break;
case 'C' : printf("OK\n");
idw break;
case 'D' : printf("Mmmmm....\n");
break;
e —- I ,
m_. case 'F' : printf("You must do better than this\n");
false break;
/ default : printf("What is your grade anyway?z\n");
p 2 g yway
}
'

?

P. Conde Muino C++ Programming 277

?l i“ while loop

% While the expression is true, while (expression)
statement

execute the statement
% Can become an infinite loop

Ensure that expression T |
. . expression Ul Ry statement
becomes false at certain point ’;ﬂ
#include <iostream> l

using namespace std;

int main ()

{
// Local variable declaration:
int a = 10;

// while loop execution
while(a < 20)

{
cout << "value of a: " << a << endl;
at+;

}

return 0;

}

P. Conde Muino C++ Programming 28

EEEEEEE!!!i“n
[=

if (expression)
found = true;

//finitialize the loop control variable

//test the loop control variable

/ /update the loop control wvariable

P. Conde Muinio

C++ Programming

29

E!!i“ do ... while
LI P

* Execute the statement until expression is true
Ensure that expression becomes true to avoid infinite loop

do
statement
while (expression); m
enp:esswn — true
a. 1i=11; b. i = 11;
_ ; MR
while (i <= 10) do '
{ {
cout <€ 1 < " ", oout €€ 1 <<€ ")
i=1i+25; i=1i+5;
} }
cout << endl; while (i <= 10);

cout << endl;

P. Conde Muifio C++ Programming 30

?l i“ The for loop

% designed to allow a counter variable that is initialized at the
beginning of the loop and incremented (or decremented) on each
iteration of the loop.

for (initial statement; loop condition; update statement)
statement

?

1 #include <iostream>
- 2 using namespace std;
initial
3
- - 4 int main () {
¢ 5
— true — eI sll;[tlgra::nt g for (lnzoit=<3?xx<j ‘]‘.[\)I,;”I:{ =x + 1)
fﬁw 8
{ 9 return 0;
10 }

?

P. Conde Muifio C++ Programming 31

* For loop

for(initialization; condition;

{

statementl
statement?Z

equivalent to

incrementation)

1 4#include <iostream>

2 using namespace std;

3

4 int main() {

5

9] for(int x = 0; x < 10; x = x + 1)
7 cout << x << “\n”;

8

9 return 0;

10 }

for versus while

while loop:

initialization
while (condition)

{

statementl
statement?2

incrementation

1 #include <iostream>
2 using namespace std;
3

4 int main{() {

5

6 int x = 0;

7 while(x < 10) {

8 cout << x << “\n”;
9 X =x+ 1;
10 }

11

12 return 0;

13 }

P. Conde Muinio

C++ Programming

32

E! i“ break and continue
LI P

% They alter the flow of control
% break statement is used for two purposes:

To exit early from a loop (eliminating the use of certain flag
variables)

To skip the remainder of the switch structure

* After break, the program continues with the first statement
after the structure

#* continue:

It skips remaining statements and proceeds with the next
iteration of the loop

P. Conde Muifio C++ Programming 33

?l i“ Examples

* See program to find the first n prime numbers

% Notice:
Indentation: used for easy readability of the code
Comments: are used to help the reader
Variables declared within a loop or an if exist only inside!

P. Conde Muifio C++ Programming 34

User defined functions

P. Conde Muinio

C++ Programming 35

Functions

% Building blocks

Allow complicated programs to be divided intfo manageable
pieces

* Some advantages of functions:

A programmer can focus on just that part of the program
and construct it, debug it, and perfect it

Different people can work on different functions
simultaneously

Can be re-used (even in different programs)
Enhance program readability
* Examples: pre-defined sqrt (x)

mathematical functions pow(x, v) #include <cmath>

floor ()

P. Conde Muifio C++ Progréuumsii 5 36

Examples: maths functions

TABLE 6-1 Predefined Functions

Returns the absolute value
of its argument: abs(=7) =7

int int

abs (x) <ecstdlib>

Returns the smallest whole
ceil (x) <cmath> number that is not less than double double
x: ceil(56.34) = 57.0

Returns the cosine of angle double
cos (x) <CHath> x: cos(0.0) = 1.0 (radians) Sovtle
x e -
exp (x) comath> NoUMee ,Wheee =2.718: .., double

exp(1.0) = 2.71828

Returns the absolute value
fabs (x) <cmath> of its argument: double double
fabs (-5.67) =5.67

Returns the largest whole
floor{x) <cmath> number that is not greater than double double
x:floor(45.67) =45.00

Returns x¥; If x is negative, y
pow(x, y) <cmath> must be a whole number: double double
pow(0.16, 0.5) =0.4

P. Conde Muifio C++ Programming 37

Functions

* Example on how to use them:
double pow(double base, double exponent)

double u = 2.5;
double v = 3.0;
double x, y, w;

x = pow(u, v); //Line 1
¥y = pOW(Z.O, 3.2}; //L:Lne 2
w = pow(u, 7); //Line 3

% Creating your own functions:

't'unctionType functionName (formal parameter list)
{

Data type 7

or return }

type
% Call to your function:

statements

functionName (actual parameter list)

P. Conde Muifio C++ Programming 38

E! i“ return
L

% The function returns a value via the return statement
It passes this value outside the function via the return

statement
The function immediately terminates after the return
statement

double larger (double x, double y) double larger (double x, double y)

{
double max;

if (x >=y)
max = Xx;
else
max = y;

return max;

{
if (x >=y)
return x;
else
return y;

P. Conde Muinio

C++ Programming

39

Declared here
Implemented
later on the
same/other file

//Program: Largest of three numbers

#include <iostream>

using namespace std;

ouble larger (double x, double y);
double compareThree (double x, double y, double z);

int main()

double one, two;

cout <<
<<

cout <<

"Line 2: The larger of 5 and 10 is "
larger (S, 10) << endl;

"Line 3: Enter two numbers: “;

cin >> one >> two;

cout <<

cout <<
<<
<<

cout <<
<<
<<

endl;

"Line 6: The larger of " << one
" and " << two << " is "
larger (one, two) << endl;

"Line 7: The largest of 23, 34, and "

"12 is " << compareThree(23, 34, 12)
endl;

return 0;

//Line
//Line
//Line

//Line
//Line

//Line

//Line

= W

P. Conde Muinio

C++ Programming

40

double larger (double x, double y)
{
1f (x >= y)
return x;
else
return y;

}

double compareThree (double x, double y, double 2z)

{
return larger(x, larger(y, z)):;

}

* Execution begins at the first statement in the function main

*

Other functions executed only when called

% A function call results in transfer of control to the first
statement in the body of the called function

* After the last statement of a function, control passed back to the
point immediately following the function call

% After executing the function the returned value replaces the
function call statement

P. Conde Muifio C++ Programming 41

Void function

P
% Does not have a return type ’}'Oid functionName ()
statements

}

void functionName (formal parameter list)

{

statements
}

void printGrade (int cScore)

{

cout << "Line 7: Your grade for the course is ";

if (cScore >= 90)
cout << "A." << endl;
else if (cScore >= B0)
cout << "B." << endl;
else 1f(cScore >= 70)
cout << "C." << endl;
else if (cScore >= 60)
cout << "D." << endl;
else
cout << "F." << endl;

P. Conde Mui ' 42

E! i“ Function overloading
LI P

% Ina C++ program, several functions can have the same name
Function overloading or overloading a function name

% Two functions are said to have different formal parameter lists
if both functions have:

A different number of formal parameters, or

The data type of the formal parameters, in the order you list
them, must differ in at least one position

* The signature of a function consists of the function name and its
formal parameter list

void functionXYZ ()

void functionXYZ(int x, double y)

void functionXYZ (double one, int y)

void functionXYZ(int x, double y, char ch)

P. Conde Muino C++ Programming 43

Arrays

P. Conde Muifio C++ Programming 44

Eﬂ i“
!
L

* Store multiple values together as an unit:

type arrayName[dimension];

int arr[4] =

int arr/|[]

{

6,

% Can have multiple dimensions:

type arrayName|[dimensionl] [dimensionZ];

T

Abstraction: elements in memory
are 1n a simple array!

0 ~Joy Ul WMNE

1, 1 1}

#include <iostream>
using namespace std;

int main () {
int twoDimArray[2] [4];
twoDimArray[0] [0] = 6
twoDimArray[0] [1] = O;
twoDimArray[0] [2] 9

-
r

P. Conde Muinio

C++ Programming

45

Arrays

0 #include <iostream>

1 using namespace std;

2

3 1int sum(const int array[], const int length) {
4 long sum = 0;

5 for(int 1 = 0; 1 < length; sum += arrayl[i++]);
6 return sum;

7T}

8

9 1int main() {

10 int arr[] = {1, 2, 3, 4, 5, 6, 7};

11 cout << "Sum: " << sum(arr, 7) << endl;

12 return 0;

13 }

P. Conde Muino C++ Programming 46

User defined data structures: classes

P. Conde Muinio

C++ Programming 47

?{!i;“ Object oriented programming

#* In procedural programming paradigm programs are made of
functions that are frequently not re-usable

Likely to reference headers, global variables,
Not suitable for high level of abstraction

4 Headers
4 | Name
. Global variables Name |/ / Attributes | /
. function-1 | Attributes | Behaviors . Name |~
oo o o i e - Attributes = -
function-2 Behaviors
______________ Behaviors
function-3 1 \ i o
' - -zl J Name Name %
",f unction-x ' --:: : Attributes =~ Attributes |
: Behaviors Behaviors
function-n An object-oriented program consists of many well-encapsulated

objects and interacting with each other by sending messages
A function (in C) is not well-encapsulated

P. Conde Muifio C++ Programming 48

Example football game

Player Ball Field Referee

* Static classes but

Audience Weather ScoreBoard

dynamical behaviour | | 7

1

% Player:
. Classes (Entities) in a Computer Soccer Game
has attributes:
Name, number, location in the field, ...
Actions: run, kick the ball, stop, ...

% Some of this objects, like player, could be re-used for a
basketball game!

P. Conde Muifio C++ Programming 49

! Object oriented programming

* Ease software design

Dealing with high-level concepts and abstractions
#* Ease software maintenance:

object-oriented software are easier to understand,
therefore easier to test, debug, and maintain.

% Reusable software
Use already tested and debugged code

P. Conde Muifio C++ Programming 50

;§! i“ Class detfinition

* Classname: identifies the class. Classname

% Data Members or Variables (or Data Members
attributes, states, fields): contains the (Static Attributes)

* Member Functions (or methods, Ll s
behaviors, operations): contains the A class is a 3-compartment box
dynamic operations of the class. PRGN AN ot sovd uvchlors

class Circle { // classname

pRavake; Classes can then be

double radius; // Data members (variables)
=tring icalon: used as your own type
public: of data

double getRadius(); // Member functions
double getArea();

}

P. Conde Muifio C++ Programming 51

E!gi“ Class 1instantiation
L1 P

// Construct f the class Circle: cl1, c2, and c3
Circle c1(1.2, "red™); // radius, color

Circle c2(3.4); // radius, default color
Circle c3; // default radius and color

* Call constructor directly:

Circle cl1 = Circle(1.2, "red"); // radius, color
Circle c2 = Circle(3.4); // radius, default color
Circle c3 = Circle(); // default radius and color

% Access members: // Invoke member function via dot operator
cout << cl.getArea() << endl;
anInstance.aData cout << c2.getArea() << endl;
anInstance.aFunction() // Reference data members via dot operator
cl.radius = 5.

5;
c2.radius = 6;

P. Conde Muifio C++ Programming 52

Constructor

#* Function with the same name as the class

% Used to construct and initialize all the members of the class

% To create an instance of a class you need to call the constructor
Can only be called once per instance!

% Has no return type:

// Constructor has the same name as the class

Circle(double r = 1.9, string c =W
radius = r; Default

color = c; argument!

* Alternative syntax:

Circle(double r = 1.0, string c = "red") : radius(r), color(c) { }

P. Conde Muifio C++ Programming 53

?!I iﬂ Private, public, getters and setters

% Private versus public members
Private members are only accessible inside the class
Public members can be accessed:

cl.radius = 5.5; % Only for public
c2.radius = 6.6; members!

% Can use getters and setters:

// Setter for color
void setColor(string c) {
color = c; }

}

string getColor() {
return color;

P. Conde Muifio C++ Programming 54

* Keyword this:

class Circle {
private:
double radius; // Member variable called "radius"
public:
void setRadius(double radius) { // Function's argument also called "radius"
this->radius = radius;
// "this.radius" refers to this instance's member variable
// "radius" resolved to the function's argument.

2 Assignmen‘r oper'a’ror' (:): Circle c6(5.6, "orange"), c7;
c7 = c6; // memberwise copy assignment

Provided by the compiler

Assigh one object to another of the same class via member-
wise copy

P. Conde Muifio C++ Programming 55

;§! i“ Destructor

#* Special function that has the same name as the classname
called implicitly when an object is destroyed
It will be very important when using pointers! (next class)

class MyClass {

public:
// The default destructor that does nothing
~MyClass() { }

P. Conde Muifio C++ Programming 56

Example: clock class

* Header file contains declaration

% Cpp file contains the implementation
% Pre-processor options:

#ifndef TIME.H // Include this "block" only if TIME_H is NOT defined
#define TIME.H // Upon the first inclusion, define TIME_H so that
// this header will not get included more than once

% 3 versions
Simple one
Using getters and setters
With functions to handle exceptions
% Notice the overloaded operators (version 3)

P. Conde Muifio C++ Programming 57

Inheritance

P. Conde Muinio

C++ Programming

58

E! i“ Inheritance
L

* Example // Derived class
class Rectangle: public Shape
// Base class { _
class Shape public:
q int getAreal()
public: { _ _
void setWidth(int w)) return (width % height);
{
width = w; L H
}
void setHeight(int h)
{
height = h;
proiected' int main(void)
iﬂ% ﬁéi;ﬂ{. Rectangle Rect;
b Rect.setWidth(5);

Rect.setHeight(7);

// Print the area of the object.
cout << "Total area: " << Rect.getArea() << endl;

return 9;

P. Conde Muifio C++ Programming 59

* Notice: using UML to define the
class structure

UML = Unified Modeling
Language
Very useful to design software

~ P. Conde Muifio C++ Programmi:__ 60

Standard Library

P. Conde Muinio

C++ Programming

61

;§! i“ The Standard Library

% Collection of classes and functions, which are written in the core
language and part of the C++ ISO Standard itself

Complex data types: classes
Need always an include file

* Examples:
Standard input/output (cin, cout)
Write/read files
Strings: sequences of characters
Vector classes

(see www.cplusplus.com)

P. Conde Muifio C++ Programming 62

The std::string

* Programmed defined type used to handle strings of characters
File to be included: #include <string>
Examples of usage:

string strl, str2, str3;

strl = "Hello"

str2 = "There"

str3 = strl + ' ' + str2;— "Hello There"

Replace one character:

strl = "Hello there" I+ Ks as I
strl[6] = 'T'; WOIrKs as an array:

See example program

P. Conde Muifio C++ Programming 63

std::string functions

strVar.

at (index)

strVar[index]

strVar

strVar

strVar

strVar

strVar

.append (n, ch)

.append (str)

.clear ()

.compare (str)

.empty ()

Returns the element at the position specified by
index.

Returns the element at the position specified by
index.

Appends n copies of ch to strVar, in which ch
is a char variable or a char constant.

Appends str to strVar.
Deletes all the characters in strVar.

Compares strVar and str. (This operation
is discussed in Chapter 4.)

Returns true if strVar is empty; otherwise,
it returns false.

P. Conde Muinio

C++ Programming 64

EEE i“
!
L1 P

strVar.erase ()

strVar.erase (pos, n)
strVar.find (str)

strVar.find (str, pos)

strVar.find first of
(str, pos)

strVar.find first not of
(str, pos)

More std::string functions

Deletes all the characters in strVar.

Deletes n characters from strVar starting at
position pos.

Returns the index of the first occurrence of str
in strVar. If stris not found, the special value
string: :npos is returned.

Returns the index of the first occurrence at or
after pos where str is found in strVar.

Returns the index of the first occurrence of any
character of strVar in str. The search starts
at pos.

Returns the index of the first occurrence of any
character of str not in strVar. The search
starts at pos.

P. Conde Muifio C++ Programming 65

More std::string functions

Inserts n occurrences of the character ch at index

strVar.insert (pos, n, ch); pos into strVar; pos and n are of type
string::size_ type; ch is a character.

Inserts all the characters of str at index pos

strVar.insert (pos, str); into strVvVar.

Returns a value of type string::size type

strVar.length () giving the number of characters strVar.

* See also www.cplusplus.com

P. Conde Muifio C++ Programming 66

Pointers & references

P. Conde Muinio

C++ Programming 67

;§! i“ Why do we need pointers?

* Most people say
Oooohhh! They are a powerful tool!
* But... why?
Allow you to modify data inside a function

Allow you to dynamically allocate memory

You don't need to know in advance how much data your program
is going to handle

* Example:
A function that changes the value of a variable
See example 2.

P. Conde Muifio C++ Programming 68

E! i“ Pointers
L

* A pointer is a variable that stores/manipulates addresses in

memory
It's possible values are the memory allocations
: : _ ~
* Declaring a pointer: int *p;
dataType *identifier; Examples < intx Br
int * p;
Be careful: ~

int* p, q; only the firstone is a pointer
int *p, *q; both are pointers
p, q: can store the memory address of any int variable

% Address operator & int x;
Pp = &X;

P. Conde Muifio C++ Programming 69

Pointers (1I)

* Dereference operator *:

int x = 25;
int *p;
p = &x; //store the address of x in p
~
Coll 5S Sp SN endlL; Accesses the value stored in
*p = 55; the memory pointed to by p
-

% Example:
int Attention! Allocates memory
int num; for the pointer p (an address)

1. num = 78; not for *p
2. p = #
3. *p = 24;

P. Conde Muino C++ Programming

70

Pointers (II)

* Dereference operator *:
int x = 25;
int *p;
p = &x; //store the address of x in p

~

* . .
cout << *p << endl; Accesses the value stored in

the memory pointed to by p

-

* Exanple N P)
int *p; 1200 1800

int num; P e

1. num = 78;

2. p = #
3. *p = 24;

P. Conde Muifio C++ Programming 71

Pointers (1I)

* Dereference operator *:

int x = 25;
int *p;
p = &x; //store the address of x in p

~

* . .
cout << *p << endl; Accesses the value stored in

the memory pointed to by p

iy
int *p; 1200 1800
int num; P o
1 . /

*p = 55;
* Example:

num = 78; 1200 1800
2. p = # P num
3. *p = 24;

P. Conde Muifio C++ Programming 72

Pointers (1I)

* Dereference operator *:

int x = 25;
int *p;

p = &x; //store the address of x in p

cout << *p << endl;

*p = 55;
* Example:
int *p;
int num;
1. num = 78;
2. p = #
3. *p = 24;

~

Accesses the value stored in
the memory pointed to by p

-
1200 1800
P num
1800
/ >

1200 1800

num

p
> 1800

1200 1800

P. Conde Muinio

C++ Prograr P i 73

i *p, &p and p

P
int *p;l |
= 1400 1750
int x; 5 .
&p (1400 p | ? (unknown)| *p | Does not exist &x |1750| x [? (unknown)

(undefined)

&p 1400 p | ? (unknown)| *p | Does not exist &x |[1750 | x |50
—— 50;/7 (undefined)
P = &Xip g (1400 p | 1750 *p | 50 sx |1750 | x |50
*p = 38
P ’

&p |[1400 p | 1750 *p| 38 &x |A7850 | |38

* See Example3

P. Conde Muifio C++ Programming 74

E! i“ Pointers to classes
L1 P

* You can also declare pointers to classes
% Remembering the clock class from last lecture:

class Clock {

public:

int hour; i g o~ 23 :

int minute; // @ - 59 —» Clock *myTime;

iR Seeondh. R 0P (*myTime) .hour = 10;
public: (*myTime) .print () ;

// Constructor with default values cout << (*myTime) .hour

Clock(int h = @, int m = 0, int s = @) << a1

en ’

% Attention! The access operator . has preference
Use () before the access operator .

*myTime.hour = 10; if hour were a pointer, would access its
content

P. Conde Muifio C++ Programming 75

E! i“ Pointers to classes
L1 P

% To avoid problems: operator ->
pointerVariableName->classMemberName

class Clock {

public:

int hour; // 8 - 23 .

int minute; // @ - 59 —» Clock *myTime;

iR Seeondh. R 0P myTime->hour = 10;
public: myTime->print () ;

// Constructor with default values cout << myTime—>hour

Clock(int h = @, int m = 0, int s = @)

<< endl;

P. Conde Muifio C++ Programming 76

E[E!i“
!
L

Example

class classExample

{
public:
void setX(int a);
void print () const;
private:
int x:
}:
void classExample: :setX(int a)
{
X = a;
}
void classExample::print () const
{
cout << "x = " << x << endl;
}

int main()

{
classExample *cExpPtr;
classExample cExpObject;

cExpPtr = &cExpObject;

cExpPtr->setX(5) ;
cEXpPtr->print ()

return 0;

* QOutput:
X = 5

P. Conde Muinio

C++ Programming 77

!
L

Example

class classExample

{
public:

void setX(int a);
void print () const;

private:
int x;
}i

void classExample:

void classExample:

{

cout << "x ="

}

:setX(int a)

:print () const

int main()

{
classExample *cExpPtr;
classExample cExpObject;
cExpPtr = &cExpObject;

cExpPtr->setX(5) ;
cExpPtr->print () ;

return 0;

<< x << endl;

P. Conde Muinio

C++ Programming

cExpObject

CExXpPtr .—>

cExpObject

?!I iﬂ Initialization of pointer variables

= NULL;
% Pointer variables must be initialized E 0:

Point to nothing: 0, NULL

% Pointers manipulate data in existing memory spaces
Why are they useful?

% Dynamic allocation of memory: the new operator

new dataType; //to allocate a single variable
new dataTypel[intExp]; //to allocate an array of variables

P. Conde Muifio C++ Programming 79

“ Examples: operator new
P

int *p; //p is a pointer of type int

char *name; //name is a pointer of type char
string *str; //str is a pointer of type string
p = new int; //allocates memory of type int

//and stores the address of the
//allocated memory in p
*p = 28; //stores 28 in the allocated memory

name = new char([5]; //allocates memory for an array of
//five components of type char and
//stores the base address of the array
//in name

strcpy (name, "John"); //stores John in name

str = new string; //allocates memory of type string
//and stores the address of the
//allocated memory in str
*str = "Sunny Day"; //stores the string "Sunny Day" in
//the memory pointed to by str

P. Conde Muifio C++ Programming 80

Operator delete

L 1
1500
int *p;
/ 1500

*p = 54;
P = new int;
o= Y3;

P. Conde Muifio C++ Programming 81

Operator delete

1500
54

int *p;

1800
P = new int; p[18001—>
*p = 54; /'
P = new int;
o= 13;

P. Conde Muifio C++ Programming 82

Operator delete

1500
54
int *p;
1800
p = new int; p[18004—>»{ 73
*p = 54;
o= Y3;

% Memory was allocated twice

The memory address 1500 can't be used any more but it
cannot be accessed either because there is no pointer to it

* If repeated many times may consume all available memory!
Memory leak

P. Conde Muifio C++ Programming 83

Operator delete

1500
1800
*p = 54;
p = new int;
o= Y3;

% Memory was allocated twice

The memory address 1500 can't be used any more but it
cannot be accessed either because there is no pointer to it

* Use delete operator

delete pointerVariable; //to deallocate a single
//dynamic variable

delete [] pointerVariable; //to deallocate a dynamically

//created array

P. Conde Muinio

Pointer operations
P

int *p, *q;

P = g; copy operator (copies memory addresses)

p == g logical operator (true if both point to the same
memory address)

pt+; Increment the memory address by one

(i.e. points to the next memory space of

p=p+t1l;
size int, in this case)

P. Conde Muifio C++ Programming 85

i Arrays and pointers

P
* Dynamic array: Creates an array of size 10
int *p; Stores the value 25 in the first element
p = new int[10]; Advances o the next memory address
*p = 25; (second element)
f;ri 35, Stores the value 25 in the second element
Equivalent to p[0] = 25;
pll] = 35;

% Static array:

list 1000
int 1ist[5]; S~
1ist[0] 1000
list[1] 1004

| | 1ist[2] 1008
list is a pointer but the memory list[3] 1012

address it points to cannot be changed ;.. 47 1016

during the program execution
P. Conde Muino C++ Programming

1ist: memory address of the first
element

?ﬂ!i;“ Coming back to example 2

Binclude <iostream>

#include <string> Using poin’rer's, we can
using namespace std; Cor'r'QC'Hy implemen‘l‘ the
void Reset(string xtext){ example P
cout << "Inside Reset() function " << endl; 1 1
cout << " Received the string " << xtext << endl; The funcflon receives a
(ktext) = "XXX" ; I [
cout << " Changed string to " << xtext << endl; POIHTCF TO a STr'mg
}

I't resets the string to a
int main() { certain value

In the main, we need to

string x = "C++ lecture 2, example 2" ;

cout << "My main program" << endl; pass the address of the

cout << "Initialized variable x to " << x << endl; .

cout << " " << endl; X variable to the
function Reset()

Reset (&x);

cout << " " << endl;

cout << " Came back to main program " << endl;
cout << " The value of x is now " << X << endl;

P.Co e 87

Shallow versus deep copy

rirst [E— NN
SRS e 10136189(29147(64(2892(37]73

int *first:
int *second;

first = new int[10];

first
second = first; .fl-mm

second

delete [] second; first [l§—

* After a sequence of this type, both pointers are dangling

If the program tries to access first, it will either crash or
produce and invalid result

P. Conde Muifio C++ Programming 38

! Shallow versus deep copy

second = new int[10];

for (int j =0
second[j]

ZEE pag 103618912047 164[28]92137]73
SR ey 10136(89129147]64128192[37] 73

* Deleting the second pointer will not invalidate the first one

j < 10; j++)
first[]j];

II e

P. Conde Muifio C++ Programming 89

Destructor

* Consider the following example:

class ptrMemberVarType

{ Object of type ptrMemberVarType

public: objectOne

private:

ant x;
int lenP;
int *p; -

};

* When going out of scope, we need to free the memory allocated

top ptrMemberVarType: : ~ptrMemberVarType ()

{
delete [] p:

}
Notice: p should be properly initialized before destructing it!

P. Conde Muifio C++ Programming 90

! Overloading the copy operator

objectTwo = objectOne;

objectOne objectTwo

= 5 36]24]15] ...

* If objectOne dealocates the memory of pointer p, objectTwo
becomes invalid

% Overloading:

objectOne objectTwo

C++ allows you
to extend the
copy operator

s Jaelaalus).... s olaalus) ...

P. Conde Muifio C++ Programming 91

Copy constructor

class ptrMemberVarType

{
public:
void print () const;

//Function to output the data stored in the array p.
void insertAt (int index, int num);
ptrMemberVarType (int size = 10);

//Constructor

//Creates an array of the size specified by the

/ /parameter size; the default array size is 10.
~ptrMemberVarType () ;

/ /Destructor
ptrMemberVarType (const ptrMemberVarType& otherObject);

//Copy constructor

private:
int maxSize; //variable to store the maximum size of p
int length; //wvariable to store the number elements in p
int *p; //pointer to an int array

};

P. Conde Muifio C++ Programming 92

U Copy constructor

//copy constructor
ptrMemberVarType: :ptrMemberVarType

(const ptrMemberVarType& otherObject)
{

maxSize = otherObject.maxSize;
length = otherObject.length;
p = new int[maxSize];

for (int i = 0; i < length; i++)

pl[i] = otherObject.pl[i]:;
}

% Avoids shallow copy of the pointers

P. Conde Muinio

C++ Programming 93

Reading/Writing files

P. Conde Muinio

C++ Programming 94

i Input/output

% I/O is the process of sending and receiving data
* I/0 may be done to:
Persistent devices (such as file systems)
Volatile/ephemeral devices (screen, keyboard)
Persistent non-computer devices (printers)

* Programming languages provide interfaces to performing I/0O
and accessing persistent devices

C++ has the iostream library

% They also provide abstractions for doing so
Stream abstraction
File abstraction

C's stdio library
P. Conde Muifio C++ Programming 95

E! i“ Streams
L

* Streams are made of basic types

Characters (bytes) in C++
* Every class for reading from input devices derives from: istream
* Every class for writing to output devices derives from: ostream

Functions that return ostream/istream references can
write/read from any arbitrary device

Flexibility and reusability of interfaces

ostream& operator<< (ostream& os, complex& cn)

{
}

complex cNumber;

cout << cNumber << endl; // In the same way could send
output to a file
P. Conde Muifio C++ Programming 96

E! i“ 10stream
L1 P

% ios is a base class that
Manages error and format state of a stream
Communicates with a device's buffer

* streambuf is a helper class that
Buffers data

* istream and ostream are specializations of ios that define input
and output specific

operations
Example: <«<and>>

P. Conde Muifio C++ Programming 97

;§! i“ streambuf

* Associated to ostream/istream
* Memory block that acts as an intermediary between the stream
and the physical file
Characters not flushed directly to file

Kept on buffer till data is written to the physical
medium/freed
Synchronization

% Synchronization takes place when:
File is closed

The buffer is full
Explicitly, with manipulators (example: flush, endl).

Explicitly, with member function sync()

P. Conde Muifio C++ Programming 98

Formatting

% Formatting
Send the input into the stream abstraction

Convert arbitrary types to character streams
* Extended by class definitions of operator<« and operators>
Which use the existing string s K

string t =
int h = 13
int min = 33

cout << s << h << ":" << min << ", " << endl:

"The current time is
" hours "

formatting for built in
Types

The current time is 13:33.

Easily extensible interface:

ostream & operator<< (ostream& os, const complex & other)

{

0s << other.getReal() << * + “ << other.getImag() << “i”";
return os;

}
P. Conde Muifio C++ Programming 99

File streams

* Stream to read/write to a file
Data will be persistent
* File classes
Output class ofstream inherits from ostream
Input class ifstream inherits from istream
Input/output class fstream used to read/write to the same

file
. #include<fstream>
* Thus, standard stream interfaces j¢oiream is (“input.dat”);
can be used to read/write files ofstream os (“output.dat”);
int n;
% Name of the file specified while (is >> n)
in the constructor {

0s << n << endl;

}

P. Conde Muifio C++ Programming 100

File streams

% File stream classes are a example of multiple inheritance

P. Conde Muifio C++ Programming 101

;§! i“ File abstraction

* A file is a stream
by definition as it inherits the properties
* A file contains persistent data
Write creates new data (or overwrites existing data)
Read returns existing data (without damaging the data)
Differs from other stream types which are destructive
% A file uses "pointers” to implement the stream abstraction
Get "pointer” for the next data to be read
Put "pointer” for the next data to be written

* Reading/writing next data
advances the File
pointers A A
get put

P. Conde Muifio C++ Programming 102

;§! i“ File attributes

* Properties of the file can be specified:

In the constructor

Using the open() function with a default constructor
% Properties dictate:

legal operations (read, write, append)

disposition of the file pointer (start, end)

naming/creation options

mode (binary or text)

P. Conde Muifio C++ Programming 103

;§! i“ File attributes

* Properties of the file can be specified:

In the constructor

Using the open() function with a default constructor
* Afttributes:

Attribute Purpose

10s::in Open for reading

10s::out Open for writing

i0s::ate Open and seek to end of file
10s::app Append writes to end of file
10s::trunc Truncate file to zero length
10s::nocreate Fail if file does not exist
i0s::noreplace Fail if file exists

10s::binary Open in binary (nontext) mode

P. Conde Muino C++ Programming 104

Examples

ofstream myfile;
myfile.open ("example.bin", ios::out | ios::app | ios::binary);

1// writing on a text file [file example.txt]
2 #include <iostream> This is a line.
3 #include <fstream> This is another line.

4 using namespace std;

6 /int main () {

7 ofstream myfile ("example.txt");

8 if (myfile.is open())

9 {
10 myfile << "This is a line.\n";
11 myfile << "This is another line.\n";
2 myfile.close();
13|)

! else cout << "Unable to open file";
15 return 0:

P. Conde Muifio C++ Programming 105

Backup

P. Conde Muifio C++ Programming 106

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

