

Universidade do Minho Escola de Ciências

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Probing the Standard Model and Beyond at the LHC

Nuno Castro nfcastro@lip.pt

LIP Internship 2022

Fundação para a Ciência e a Tecnologia UIDP/50007/2020 LA/P/0016/2020 CERN/FIS-PAR/0010/2021

The Standard Model of Particle Physics particles & interactions

Standard Model of Elementary Particles

The Standard Model of Particle Physics particles & interactions

The Standard Model of Particle Physics probing it at colliders

The Large Hadron Collider and its detectors

The Large Hadron Collider and its detectors

Hadron colliders kinematic variables

Relevant kinematic variables:

- Transverse momentum: pT
- Rapidity: $y = \frac{1}{2} \cdot \ln (E-p_z)/(E+p_z)$
- Pseudorapidity: $\eta = -\ln \tan \frac{1}{2}\theta$
- Azimuthal angle: φ

Hadron colliders protons are not fundamental!

The Large Hadron Collider experiments what is the outcome of a collision?

Hadron colliders jets, jets and more jets

Reconstructing jets is an ambiguous task!

Hadron colliders jets, jets and more jets

Reconstructing jets is an ambiguous task!

The Large Hadron Collider experiments how to interpret what we see?

"Probability" for a collision to happen cross-section

"Probability" for a collision to happen differential cross-section

The Large Hadron Collider experiments counting events

slide from J. Varela: https://indico.cern.ch/event/862001/?view=standard#8-standard-model-at-the-lhc

The Large Hadron Collider experiments counting events

slide from J. Varela: https://indico.cern.ch/event/862001/?view=standard#8-standard-model-at-the-lhc

probe the Standard Model!

Comparing with theory predictions

excellent agreement

Standard Model Total Production Cross Section Measurements

The LHC experiments the need to select events

The LHC experiments the need to select events: triggers

doing a data analysis! the need to select events

- triggers
- define the physics objects
 - \circ jets
 - electrons
 - o muons
 - taus
 - \circ photons
 - MET

o ...

• define the good set of cuts to increase the signal to background ratio

Higgs boson production in the $H \rightarrow WW$ decay channel in the two-lepton final state

Higgs boson production in the $H \rightarrow WW$ decay channel in the two-lepton final state

looking for events with two charged isolated leptons (electrons or muons) and (almost) no jets

Higgs boson production in the H \rightarrow WW decay channel in the two-lepton final state

 $\hbar = c = 1$

$$p_{\mu} = \left(\frac{E}{c}, p_x, p_y, p_z\right)$$

$$p_{\mu}p^{\mu} = -\frac{E^2}{c^2} + p_x^2 + p_y^2 + p_z^2 = -\frac{E^2}{c^2} + p^2 = m^2 c^4$$

$$E^2 = p^2 c^2 + m^2 c^4$$

So, let's look at the dilepton invariant mass!

(still no hint for a signal)

be clever and select "good" events!

- Single-electron or single-muon trigger satisfied;
- Exactly two isolated, different-flavour opposite-sign leptons (electrons or muons) with $p_T > 22$ and 15 GeV, respectively;
- Missing transverse momentum $E_{\rm T}^{\rm miss}$ larger than 30 GeV;
- Exactly zero or at most one jet with $p_T > 30$ GeV, and exactly zero *b*-tagged jets (MV2c10 @ 85% WP) with $p_T > 20$ GeV;
- Azimuthal angle between $E_{\rm T}^{\rm miss}$ and the dilepton system $\Delta \phi(\ell \ell, E_{\rm T}^{\rm miss}) > \pi/2$;
- Transverse momentum of the dilepton system $p_T^{\ell\ell} > 30$ GeV;
- The invariant mass of the two leptons $m_{\ell\ell}$ must satisfy: 10 GeV < $m_{\ell\ell}$ < 55 GeV;
- Azimuthal angle between the two leptons $\Delta \phi(\ell, \ell) < 1.8$.

be clever and select "good" events!

- Single-electron or single-muon trigger satisfied;
- Exactly two isolated, different-flavour opposite-sign leptons (electrons or muons) with $p_T > 22$ and 15 GeV, respectively;
- Missing transverse momentum $E_{\rm T}^{\rm miss}$ larger than 30 GeV;
- Exactly zero or at most one jet with $p_T > 30$ GeV, and exactly zero *b*-tagged jets (MV2c10 @ 85% WP) with $p_T > 20$ GeV;
- Azimuthal angle between $E_{\rm T}^{\rm miss}$ and the dilepton system $\Delta \phi(\ell \ell, E_{\rm T}^{\rm miss}) > \pi/2$;
- Transverse momentum of the dilepton system $p_T^{\ell\ell} > 30$ GeV;
- The invariant mass of the two leptons $m_{\ell\ell}$ must satisfy: 10 GeV < $m_{\ell\ell}$ < 55 GeV;
- Azimuthal angle between the two leptons $\Delta \phi(\ell, \ell) < 1.8$.

be clever and select "good" events!

- Single-electron or single-muon trigger satisfied;
- Exactly two isolated, different-flavour opposite-sign leptons (electrons or muons) with $p_T > 22$ and 15 GeV, respectively;
- Missing transverse momentum $E_{\rm T}^{\rm miss}$ larger than 30 GeV;
- Exactly zero or at most one jet with $p_T > 30$ GeV, and exactly zero *b*-tagged jets (MV2c10 @ 85% WP) with $p_T > 20$ GeV;
- Azimuthal angle between $E_{\rm T}^{\rm miss}$ and the dilepton system $\Delta \phi(\ell \ell, E_{\rm T}^{\rm miss}) > \pi/2$;
- Transverse momentum of the dilepton system $p_T^{\ell\ell} > 30$ GeV;
- The invariant mass of the two leptons $m_{\ell\ell}$ must satisfy: 10 GeV < $m_{\ell\ell}$ < 55 GeV;
- Azimuthal angle between the two leptons $\Delta \phi(\ell, \ell) < 1.8$.

after all cuts...

...voila our signal!

probe the Standard Model - the Higgs boson and its properties

machine learning:

decision trees

Shallow Learning Decision Tree

- \vec{x} input features
- Labeled samples of data: blue/pink
- Partitions the data to increase sample purity
- Finds optimal criteria x_i > c_i to separate data categories
- Category prediction based on the label of the majority samples of the end leaf
- Core of the most popular algorithms used in LHC event classification (Boosted Decision Trees)

probe the Standard Model - the Higgs boson and its properties

Nature (2022)

Why going beyond the Standard Model?

there must be new physics!

probe the Standard Model - and search for new phenomena beyond it!

- Why should we search for new physics beyond the Standard Model?
 - we *must* leave no stone unturned in data
 - ... and we have good motivations to think that new physics exists
 - mass hierarchy of the fermions
 - matter/anti-matter asymmetry
 - dark matter
 - I ...

probe the Standard Model - and search for new phenomena beyond it!

probe the Standard Model - and search for new phenomena beyond it!

- If we assume that the Standard Model is the low energy limit of a more general theory at higher energy
 - the Higgs boson mass can be calculable (and not a free parameter):

 $M_{H}^{2} = 3.2734594296342905438674964732159643$ -3.2734594296342905438674964732159645 =10^{-32} (in planck units) quantum corrections, e.g.

searching for the unknown

an example: the hierarchy problem

• The *natural* solution for this balancing in mass without fine-tuning is to have counter terms originating from new heavy particles (top partners)

searching for the unknown

an example: vector-like quarks

- Many different topologies
- Looking for extremely small signals
- Advanced analysis methods are mandatory!

Artificial Neuron

- *x* is the input feature
- y is the target feature (or "label")
- *w*, *b* are the model trainable parameters
- \hat{y} is the output (model prediction)

Activation function

- e.g. linear for regression
- e.g. sigmoid for classification

$$f(x) = \frac{1}{1 + e^{-x}} \to \hat{y}$$

Loss function and Training Objective

Loss function *L* : measure of how good is \hat{y} in predicting *y*

• e.g. Mean squared error:
$$L = \frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i)^2$$

• e.g. Binary cross-entropy: $L = \frac{1}{N} \sum_{i}^{N} y_i \cdot log(\hat{y}_i) + (1 - y_i) \cdot log(1 - \hat{y}_i)^2$

Training objective: find w, b that minimise the Loss function

Gradient Descent and Back-propagation

Loss minimisation: descend the Loss surface

• Loss gradient

Back-propagate the Loss gradient (iteratively)

- and update
- and update
- is an hyper-parameter that adjusts the learning rate

Loss surface

Deep Learning

- Neural networks with many hidden layers, each with a given number of artificial neurons
- Capable of highly non-linear representations of the data
- In principle, can model any function
- Architecture -> hyper-parameters: number of layers, number of neurons/layer, ...

Practicable Deep Neural Networks

Many layers + many units

- **Vanishing gradient**: new activation functions made training possible (ReLU) (~2010)
- Advances in hardware: GPU increased speed of computation by 100 (~2010)
- APIs: Keras, Tensorflow (2015)

Deep learning

- Many parameters to estimate:
- Data thirst

Layer (type)	Output Sha	pe	Param #
flatten_10 (Flatten)	(None, 784		0
dense_22 (Dense)	(None, 128		100480
activation_19 (Activation)	(None, 128		
dense_23 (Dense)	(None, 128		16512
activation_20 (Activation)	(None, 128		0
dense_24 (Dense)	(None, 10)		1290
activation_21 (Activation)	(None, 10)		
Total params: 118,282 Trainable params: 118,282 Non-trainable params: 0			

searching for the unknown

an example: use of neural networks in searches

What's next? LHC run-3: the future has arrived!

What's next? LHC run-3: the future has arrived!

What's next? LHC run-3: the future has arrived!

What's next? LHC and beyond

LHC / HL-LHC Plan

What's next? LHC and beyond

Thanks for your attention

Questions?

you can always reach me at nfcastro@lip.pt

probe the Standard Model - and search for new phenomena beyond it!

Ano