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What is Machine
Learning?

From an Artificial Intelligence Perspective




1 Artificial Intelligence is the quest of
creating machines that think and
act intelligently




Artificial Intelligence is a big topic
and covers many problems

= Reasoning and Problem-solving
= Knowledge Representation

= Planning

= Learning

= Natural Language Processing

= Perception

= Motion and Manipulation

= Social Intelligence

= “General Intelligence”



Machine
Learning is the
subfield of Al
that concerns
how a machine
can learn to
perform tasks

Artificial
Intelligence

Machine Learning




A machine learns how to perform a task by creating
a model that will act intelligently on new data
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Machine Learning is a different
paradigm of computing: a program
that learns what it has to do



Classical
Programming

i3

Answers

Rules

= Decision
u oS H
Machlne ‘ Function
. =D
Learning e

Training

ll-\nswers

E

New

-ﬁ-ﬁ, — Answers

Rules




Machine Learning
Taxonomy

What is out there and what tasks can
we solve?




Machine Learning
Taxonomy: Types of Learning

The main differentiator is the type of learning, i.e. by task

Supervised

o Dataincludes the answers
= Unsupervised

o Algorithm embodies the answers
= Other types

o Semi-supervised

o Self-supervised

o Reinforcement



Regression Example
Linear Regression
VA




Classification Example
Logistic Regression: Parametric Example
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Machine Learning
Decision Tree: Non-parametric example




Machine Learning
Taxonomy: Unsupervised Learning

= The training data does not include the
answer we want to reproduce
= The answer is embodied in the Learning
Algorithm (i.e. provided by a human)
=  The model will learn how to map the X to
the answers
= Answers define the type of model
o (lustering
o Density Estimation
o Dimensional Reduction
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Machine Learning

Taxonomy: Other types of learning

= Reinforcement learning:

©)

= Self-supervised:
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Prompt: An astronaut riding a horse in
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Machine Learning
Taxonomy: Other Al approaches

= Search
o Travel salesman problem
o Combinatorics
= Optimisation )
o Bayesian optimisation
o (Genetic and evolutionary algorithms




Al/ML can provide alternative
approaches for any task that is
either data or computationally
intensive



Why is High-Energy Physics Ideal for Al/ML?

A match made in heaven...

= Current and future collider experiments are
data heavy

= Data generated are inherently probabilistic due
to quantum mechanics: ML loves a good
distribution

= Data simulation and calibration tasks are
computationally heavy

278

petabytes of data

In the last decade, LHC experiments collected almost 280 petabytes
of data, which scientists recorded on tape. You would need to stream
Netflix 24/7 for more than 15,000 years to eventually use that much
datal But from another perspective, platforms like Facebook (which
has 2.5 billion users) collect that much data in 70 days!

7.5 billion

Worldwide LHC Computing Grid requests

Physicists need a huge amount of computing power to do their
research—much more than a standard laptop can support. Every day
several thousand physicists submit a total of about 2 million “jobs" to
the WLCG. Each "job" is an important brick in the growing body of
scientific work.

https://www.symmetrymagazine.org
/article/10-years-of-lhc-physics-in-n
umbers



https://www.symmetrymagazine.org/article/10-years-of-lhc-physics-in-numbers
https://www.symmetrymagazine.org/article/10-years-of-lhc-physics-in-numbers
https://www.symmetrymagazine.org/article/10-years-of-lhc-physics-in-numbers

Machine Learning in
the Wild

High-Energy Physics Applications




Many many applications nowadays
Won't cover all

= HEP community has progressed significantly on Al/ML
applications in the past few years

= Exhaustive review is impossible

= The community has put together a living review
o https:/iml-wg.github.io/HEPML-LivingReview/

| will focus on broad areas of application and examples of
what we do at LIP with Al/ML


https://iml-wg.github.io/HEPML-LivingReview/

Data Intensive Tasks




Classification: Looking for something specific
Better New Physics Analysis

= We start with many (tens) of different variables: which
is the best to find the events of interest? 2

o Use a supervised classifier (trained on simulation) 3

to combine them all into a single discriminant

o We will be seeing this tomorrow in the tutorial g8
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Classification: Looking for something specific
Better Event Tagging

= Correctly identify known SM processes
o Top, Strange, B quarks
o Tau
o Higgs
o Z/W
o Quark vs Gluon Jets
Or rare phenomena
o Quark-Gluon Plasma modified jets
= Better tagging = Better Physics studies



Deep learning
Novel Approaches to Old Problems

= The current Machine Learning interest is very motivated by Deep Learning
o A class of Machine Learning models that are very versatile
m (Canintake datain any formats (even very low-level without any
human pre-processing)
e Images, Text, Audio, Video, etc
e Go beyond tabular data
m (antackle any problem which can be framed through a
differential loss
e (Generative models, Deep Reinforcement Learning, etc
e Go beyond traditional discrimination tasks



Deep learning
Novel Approaches to Old Problems: Jet Images

= Asyou have learnt from Michele's lecture, at
colliders we only have two things
o Tracks of charged particles
o Jets of from energy deposits in
calorimeters
= Asyou have learnt from Agostinhos' lecture
o (alorimeters are composed of cells
forming a grid. Each grid works as an
"eye’, or better yet: a pixel
m Canrepresent the jets as images

https://arxiv.org/abs/1707.08600



https://arxiv.org/abs/1707.08600

Deep learning
Novel Approaches to Old Problems: Jet Images

= Fresh out of the press: Deep Learning for the Classification of Quenched
Jets [MCR, L. Apolinario, N. F. Castro, J. G. Milhano, R. Pedro, F. C. R.
Peres] https:/arxiv.org/abs/2106.08869
o Differentiate jets that only lived in vacuum from those that might
have interacted with the Quark-Gluon Plasma
o Used Jet Images and Lund plane paths (Physics input)
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https://arxiv.org/abs/2106.08869

Deep learning
Novel Approaches to Old Problems: Jet Images

With no high-level features, the

networks performed better

than the customary variables

Despite the complexity of the

problem, vacuum-like jets were

consistently identified

o Allow to purify samples of

modified jet to further
study the Quark-Gluon
Plasma: ML enhanced
Physics!
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Deep learning
Novel Approaches to Old Problems: New Physics

= Supervised classifiers are great to search for something specific
= Inthe end of the day, we don't really know what new physics can look
like
= What if we want to search for anything new?
o We know what we know: The Standard Model
o We don't know what we don't know: New Physics




Deep learning

Novel Approaches to Old Problems: New Physics

https://arxiv.org/abs/2006.05432

= Since we know what we know,
the rest has to be an anomaly
= Use novel Deep Learning
methods of anomaly detection
o Auto-Encoders

o Deep-SVDD

Finding new physics without learning about it: anomaly

detection as a tool for searches at colliders
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https://arxiv.org/abs/2006.05432

Deep learning
Novel Approaches to Old Problems: New Physics

= (Can also see how different
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Other Data Intensive Tasks
One slide to cite them all

= Track reconstruction

= Pileup mitigation

= (alibration

= Experiment design

= Hardware control

= Applications in Neutrino Physics and Experiments
= (Cosmology, Astro Particle, and Cosmic Ray physics



This does not, by any means nor
extent, cover everything. I'm
aware of this.



Computationally Intensive
Tasks




Computationally Intensive Tasks
Not all data seems like data

= So far we have seen applications where we have a lot of (real or
simulated) data of events.

= Albeit this is the straightforward way to use Al/ML, many other tasks
in HEP are computationally intensive and can benefit Al/ML

= Many of these actually do involve a lot of intermediate data, which is
the reason for the computational overhead

= And remember: data is what ML craves



Computationally Intensive Tasks
Not all data seems like data: Monte Carlo Generators

= One of the main computationally intensive tasks is to simulate

experiment data using Monte Carlo generators
o Simulated data is used to prepare analyses, calibrate setups, and
even test models for Quark-Gluon Plasma for example

= Particle Physics processes are non deterministic due to their
quantum mechanical nature

= |n order to simulate events at experiments, one needs to simulate a
lot of possible events in order to have a good statistical description of
the process

= (I'm spending a lot of time in this because it'll appear again in the
tutorial)



Computationally Intensive Tasks
Not all data seems like data: Monte Carlo Generators

= The generation requires extensive sampling (data!) from unknown
distributions. This sampling is expensive if one wants to cover the
whole underlying (quantum mechanical) distribution

=  Solution: Generative methods!




Computationally Intensive Tasks
Not all data seems like data: Monte Carlo Generators

= Generative methods work by learning the EXEEEE
distribution from where we want to How to GAN LHC Events
sample. Once learnt, we can sample with Auja Butter!, Tilman Plebin!, and Ramon Winterhalder
almost no computational overhead e R e esarssn

= Two approaches:

o Start with a few examples, learn a
distribution from it and hope it
interpolates well (works ok)

o Hybrid method: Monte Carlo sampling
on top of progressively learning
approximation of the distribution

https://arxiv.org/abs/1907.03764

Introduction to Normalizing Flows for Lattice Field Theory

Michael S. Albergo,!
Kyle Cranmer,' Sébastien Ra



https://arxiv.org/abs/2101.08176
https://arxiv.org/abs/1907.03764

Computationally Intensive Tasks
Not all data seems like data: BSM Validation

= Another often overlooked use case is that of constraining Beyond the
Standard Model models
= Given a model and its parameters, what values for these are still valid

against experimental data? How to sample the valid values efficiently?
= Al/ML for the rescue!

Exploring Parameter Spaces with Artificial Intelligence and

Machine Learning Black-Box Optimisation Algorithms

Fernando Abreu de Souza,* Miguel Crispim Romao,
Nuno Filipe Castro,! and Mehraveh Nikjoo®
LIP — Laboratério de Instrumenta¢ao e Fisica htt . H
s://arxiv.org/abs/2206.09223
Ezperimental de Particulas, Escola de Ciéncias, p g

Departamento de Fisica, Universidade do Minho, 4701-057 Braga, Portugal

Werner Porod?
Institut fiir Theoretische Physik und Astrophysik, Uni Wiirzburg
Campus Hubland Nord, Emil-Hilb-Weg 22, D-97074 Wiirzburg, Germany



Computationally Intensive Tasks
Not all data seems like data: Tuning other ML models

= Even optimising models for data heavy tasks can be done with Al/ML
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The take-home
messages




Take-home messages
What Machine Learning is

= MLis a different computing paradigm of self-taught code that learns
from previous examples

= A set of solutions for current problems

= A set of novel approaches that opens up new types of research

= Atechnology that is here to stay and is already embedded in our lives

= An engineering science with little theoretical grounding but huge
collection application examples

= Currently profoundly based on statistical learning theory and function
approximation/functional analysis

= Askill-set that will be at the same level as coding for your generation



Take-home messages
What Machine Learning is not

= (apabel to extrapolate and abstract reasoning beyond tasks ->
Ultimately bound to the data where it was trained

= A solution for every problem -> Sometimes a nail is just a nail and you
only need a hammer

= A magic framework where everything can be done -> There are limits to
its application

= A substitute for other computing paradigms -> Learn how to code

= An existential threat to humanity -> Popular culture has created a
fantasy idea of Al which has no grounds on the actual technology



Further
resources

Some of them are free




Springer Texts in Statisties

Gareth James

Daniela Witten
Trevor Hastie
Robert Tibshirani

These
are free

with Applications in R

@ Springer

Springer Series in Statistics
IUNDRED-PAC
HINE LEARNING
BOOK

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Data Mining, Inference, and Prediction




Not free, by Bl Lt
but very
good

Keras & TensorFlow

Concepts, Tools, and Techniques
to Build Intelligent Systems

.....

Aurélien Géron

Actificial Intelligence Machine Learning
ik A Modern Approach A Probabilistic Perspective

NOI‘ViQ Third Edition
¢ G PEARSON

Russell

Kevin P. Murphy




For Tomorrow's
Tutorial




Tutorial info

=  We will be using Google Colab: No need to install anything
o You are of course more than welcome to set up you own python
environment on your computer, but | won't help debugging
= |t will be a mix of slides and code-along sessions, followed by breakout
rooms with other tutors (Ceu, Fernando)
= |f you want to prepare read the first two chapters of The Hundred-Page
Machine Learning Book
o https:/www.dropbox.com/s/IrhttT1wkffnmafe/Chapter1.pdf?di=0
o https:/www.dropbox.com/s/Ocprdghmnzpck8h/Chapter2.pdf?dI=0



https://www.dropbox.com/s/lrhtt1wkffnm4fe/Chapter1.pdf?dl=0
https://www.dropbox.com/s/0cprdghmnzpck8h/Chapter2.pdf?dl=0




