

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Machine learning in particle physics

LIP Internship Program Summer 2022

Miguel Crispim Romão mcromao@lip.pt Pheno Group

What is Machine Learning?

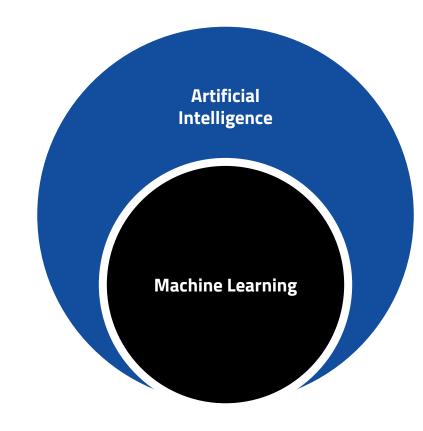
From an Artificial Intelligence Perspective

Artificial Intelligence is the quest of creating machines that think and act intelligently

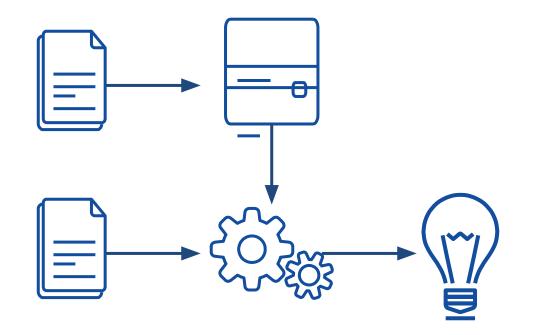
Artificial Intelligence is a big topic and covers many problems

- Reasoning and Problem-solving
- Knowledge Representation
- Planning
- Learning
- Natural Language Processing
- Perception
- Motion and Manipulation
- Social Intelligence
- "General Intelligence"

Machine Learning is the subfield of Al that concerns how a machine can learn to perform tasks



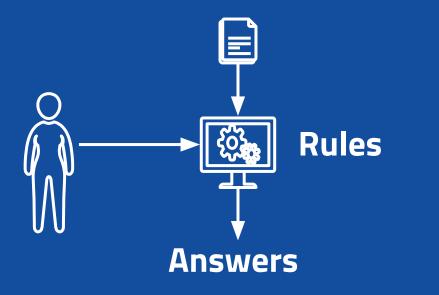
A machine learns how to perform a task by creating a model that will act intelligently on new data



Self-Taught Code

Machine Learning is a different paradigm of computing: a program that learns what it has to do

Classical Programming



= Decision Function Machine = Data Learning E **Training Answers** New Answers **Rules**

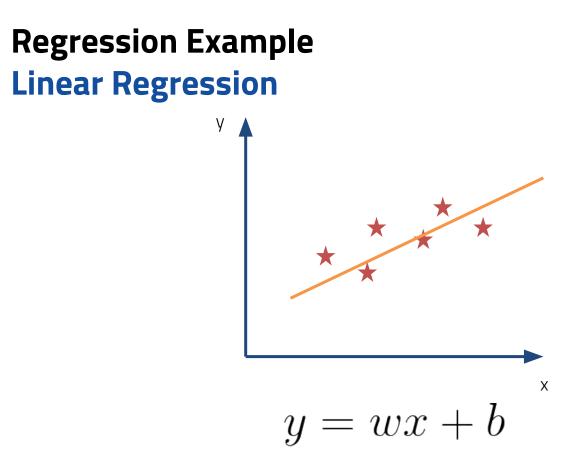
Machine Learning Taxonomy

What is out there and what tasks can we solve?

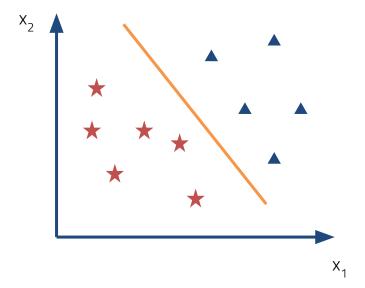
Machine Learning Taxonomy: Types of Learning

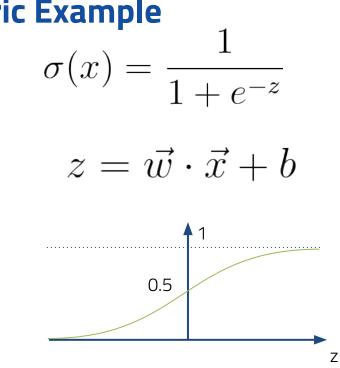
The main differentiator is the type of learning, i.e. by **task**

- Supervised
 - Data includes the answers
- Unsupervised
 - Algorithm embodies the answers
- Other types
 - Semi-supervised
 - Self-supervised
 - Reinforcement

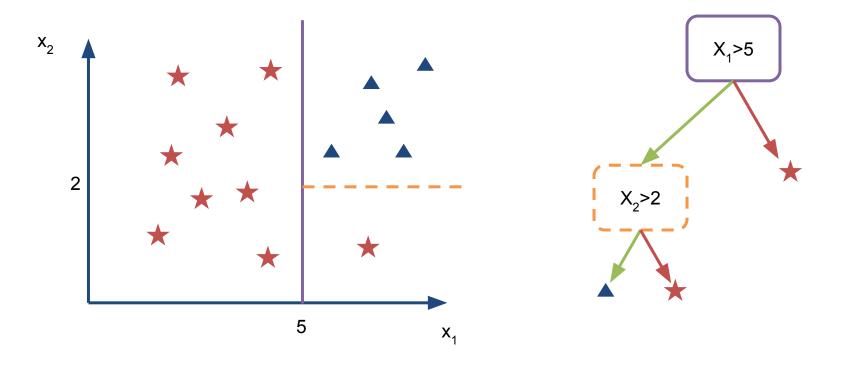


Classification Example Logistic Regression: Parametric Example



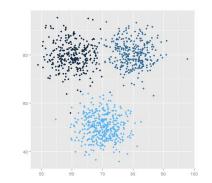


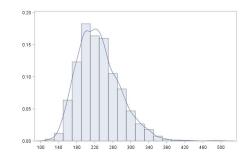
Machine Learning Decision Tree: Non-parametric example

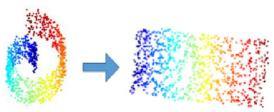


Machine Learning Taxonomy: Unsupervised Learning

- The training data does not include the answer we want to reproduce
- The answer is embodied in the Learning Algorithm (i.e. provided by a human)
- The model will learn how to map the X to the answers
- Answers define the type of model
 - Clustering
 - Density Estimation
 - Dimensional Reduction





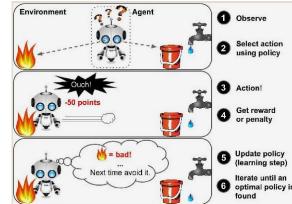


Machine Learning Taxonomy: Other types of learning

- Reinforcement learning:
 - An agent interacting with environment
- Self-supervised:
 - Representation learning
 - Generative models

Prompt: An astronaut riding a horse in a photorealistic style

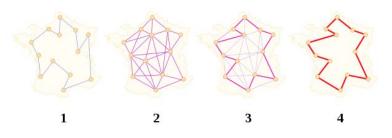
https://openai.com/dall-e-2/#demos



https://thispersondoesnotexist.com/

Machine Learning Taxonomy: Other AI approaches

- Search
 - Travel salesman problem
 - \circ Combinatorics
- Optimisation
 - Bayesian optimisation
 - Genetic and evolutionary algorithms



Main Point

AI/ML can provide alternative approaches for any task that is either **data** or **computationally** intensive

Why is High-Energy Physics Ideal for AI/ML? A match made in heaven...

- Current and future collider experiments are data heavy
- Data generated are inherently probabilistic due to quantum mechanics: ML loves a good distribution
- Data simulation and calibration tasks are computationally heavy

278

petabytes of data

In the last decade, LHC experiments collected almost 280 petabytes of data, which scientists recorded on tape. You would need to stream Netflix 24/7 for more than 15,000 years to eventually use that much data! But from another perspective, platforms like Facebook (which has 2.5 billion users) collect that much data in 70 days!

7.5 billion

Worldwide LHC Computing Grid requests

Physicists need a huge amount of computing power to do their research—much more than a standard laptop can support. Every day several thousand physicists submit a total of about 2 million "jobs" to the WLCG. Each "job" is an important brick in the growing body of scientific work.

https://www.symmetrymagazine.org /article/10-years-of-lhc-physics-in-n umbers

Machine Learning in the Wild

High-Energy Physics Applications

Many many applications nowadays Won't cover all

- HEP community has progressed significantly on AI/ML applications in the past few years
- Exhaustive review is impossible
- The community has put together a living review

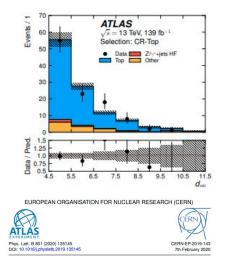
 <u>https://iml-wg.github.io/HEPML-LivingReview/</u>

I will focus on broad areas of application and examples of what we do at LIP with AI/ML

Data Intensive Tasks

Classification: Looking for something specific Better New Physics Analysis

- We start with many (tens) of different variables: which is the best to find the events of interest?
 - Use a supervised classifier (trained on simulation) to combine them all into a single discriminant
 - We will be seeing this tomorrow in the tutorial session
 - By isolating the signal, we increase the **statistical efficiency** of our analysis
 - Better efficiency = better exclusions or discovery



Search for non-resonant Higgs boson pair production in the $bb\ell v\ell v$ final state with the ATLAS detector in pp collisions at $\sqrt{s} = 13$ TeV

Classification: Looking for something specific Better Event Tagging

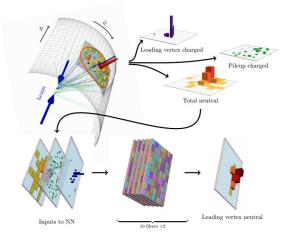
- Correctly identify known SM processes
 - Top, Strange, B quarks
 - o Tau
 - Higgs
 - o Z/W
 - Quark vs Gluon Jets
- Or rare phenomena
 - Quark-Gluon Plasma modified jets
- Better tagging = Better Physics studies

Deep learning Novel Approaches to Old Problems

- The current Machine Learning interest is very motivated by Deep Learning
 - A class of Machine Learning models that are very versatile
 - Can intake data in any formats (even very low-level without any human pre-processing)
 - Images, Text, Audio, Video, etc
 - Go beyond tabular data
 - Can tackle any problem which can be framed through a differential loss
 - Generative models, Deep Reinforcement Learning, etc
 - Go beyond traditional discrimination tasks

Deep learning Novel Approaches to Old Problems: Jet Images

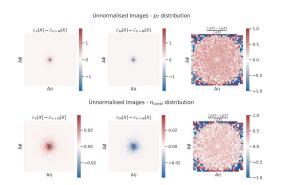
- As you have learnt from Michele's lecture, at colliders we only have two things
 - Tracks of charged particles
 - Jets of from energy deposits in calorimeters
- As you have learnt from Agostinhos' lecture
 - Calorimeters are composed of cells forming a grid. Each grid works as an "eye", or better yet: a **pixel**
 - Can represent the jets as images

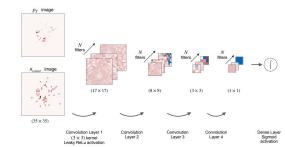


https://arxiv.org/abs/1707.08600

Deep learning Novel Approaches to Old Problems: Jet Images

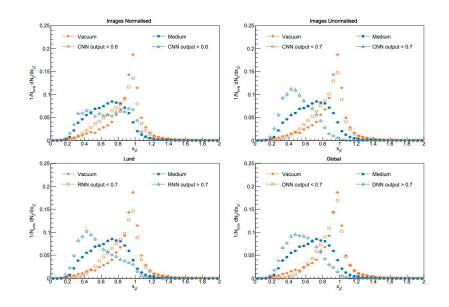
- Fresh out of the press: Deep Learning for the Classification of Quenched Jets [MCR, L. Apolinario, N. F. Castro, J. G. Milhano, R. Pedro, F. C. R. Peres] <u>https://arxiv.org/abs/2106.08869</u>
 - Differentiate jets that only lived in vacuum from those that might have interacted with the Quark-Gluon Plasma
 - Used Jet Images and Lund plane paths (Physics input)





Deep learning Novel Approaches to Old Problems: Jet Images

- With no high-level features, the networks performed better than the customary variables
- Despite the complexity of the problem, vacuum-like jets were consistently identified
 - Allow to purify samples of modified jet to further study the Quark-Gluon Plasma: ML enhanced Physics!



Deep learning Novel Approaches to Old Problems: New Physics

- Supervised classifiers are great to search for something specific
- In the end of the day, we don't really know what new physics can look like
- What if we want to search for **anything new**?
 - We know what we know: The Standard Model
 - We don't know what we don't know: New Physics

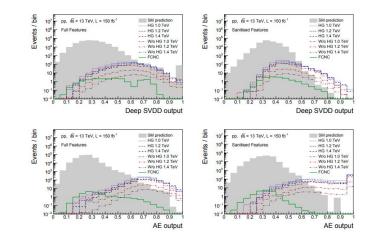
Deep learning Novel Approaches to Old Problems: New Physics

- Since we know what we know, the rest has to be an **anomaly**
- Use novel Deep Learning methods of **anomaly detection**
 - Auto-Encoders
 - Deep-SVDD

https://arxiv.org/abs/2006.05432

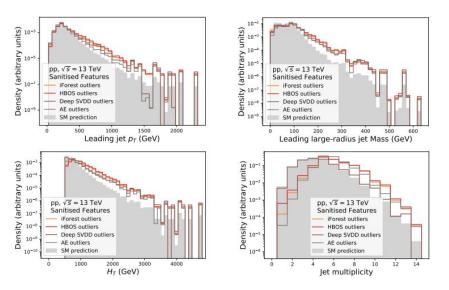
Finding new physics without learning about it: anomaly detection as a tool for searches at colliders

M. Crispim Romão¹, N. F. Castro^{1,2}, and R. Pedro¹



Deep learning Novel Approaches to Old Problems: New Physics

- Can also see how different Anomaly Detection methods detect anomalies
- Likely no "one model to find them all"
- Lot of work to be done down the road...
- Novel approach to search for New Physics, complementary to the supervised way, but with the potential of wider coverage



Other Data Intensive Tasks One slide to cite them all

- Track reconstruction
- Pileup mitigation
- Calibration
- Experiment design
- Hardware control
- Applications in Neutrino Physics and Experiments
- Cosmology, Astro Particle, and Cosmic Ray physics



Disclaimer

This does not, by any means nor extent, cover everything. I'm aware of this.

Computationally Intensive Tasks

Computationally Intensive Tasks Not all data seems like data

- So far we have seen applications where we have a lot of (real or simulated) data of events.
- Albeit this is the straightforward way to use AI/ML, many other tasks in HEP are computationally intensive and can benefit AI/ML
- Many of these actually do involve a lot of intermediate data, which is the reason for the computational overhead
- And remember: **data is what ML craves**

Computationally Intensive Tasks Not all data seems like data: Monte Carlo Generators

- One of the main computationally intensive tasks is to simulate experiment data using Monte Carlo generators
 - Simulated data is used to prepare analyses, calibrate setups, and even test models for Quark-Gluon Plasma for example
- Particle Physics processes are non deterministic due to their quantum mechanical nature
- In order to simulate events at experiments, one needs to simulate a lot of possible events in order to have a good statistical description of the process
- (I'm spending a lot of time in this because it'll appear again in the tutorial)

Computationally Intensive Tasks Not all data seems like data: Monte Carlo Generators

- The generation requires extensive sampling (data!) from unknown distributions. This sampling is **expensive** if one wants to cover the whole underlying (quantum mechanical) distribution
- Solution: Generative methods!

Computationally Intensive Tasks Not all data seems like data: Monte Carlo Generators

- Generative methods work by learning the distribution from where we want to sample. Once learnt, we can sample with almost no computational overhead
- Two approaches:
 - Start with a few examples, learn a distribution from it and hope it interpolates well (works ok)
 - Hybrid method: Monte Carlo sampling on top of progressively learning approximation of the distribution

SciPost Physics

Submission

How to GAN LHC Events

Anja Butter¹, Tilman Plehn¹, and Ramon Winterhalder¹

1 Institut für Theoretische Physik, Universität Heidelberg, Germany winterhalder@thphys.uni-heidelberg.de

https://arxiv.org/abs/1907.03764

Introduction to Normalizing Flows for Lattice Field Theory

Michael S. Albergo,^{1,*} Denis Boyda,^{2,3,†} Daniel C. Hackett,^{2,3,‡} Gurtej Kanwar,^{2,3,§} Kyle Cranmer,¹ Sébastien Racanière,⁴ Danilo Jimenez Rezende,⁴ and Phiala E. Shanahan^{2,3} ¹Center for Cosmology and Particle Physics, New York University, New York, NY 10003, USA ²Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ³The NSF AI Institute for Artificial Intelligence and Fundamental Interactions ⁴DeepMind, London, UK (Dated: January 21, 2021)

https://arxiv.org/abs/2101.08176

Computationally Intensive Tasks Not all data seems like data: BSM Validation

- Another often overlooked use case is that of constraining Beyond the Standard Model models
- Given a model and its parameters, what values for these are still valid against experimental data? How to sample the valid values efficiently?
- AI/ML for the rescue!

Exploring Parameter Spaces with Artificial Intelligence and Machine Learning Black-Box Optimisation Algorithms
Fernando Abreu de Souza,* Miguel Crispim Romão,† Nuno Filipe Castro,‡ and Mehraveh Nikjoo[§]
LIP – Laboratório de Instrumentação e Física
Experimental de Partículas, Escola de Ciências,
Departamento de Física, Universidade do Minho, 4701-057 Braga, Portugal

Werner Porod[¶] Institut für Theoretische Physik und Astrophysik, Uni Würzburg Campus Hubland Nord, Emil-Hilb-Weg 22, D-97074 Würzburg, Germany https://arxiv.org/abs/2206.09223

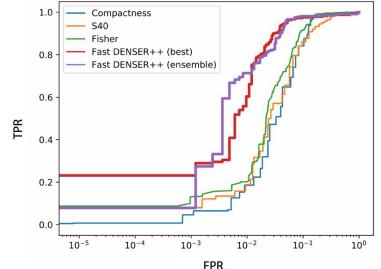
Computationally Intensive Tasks Not all data seems like data: Tuning other ML models

Even optimising models for data heavy tasks can be done with AI/ML

Automatic Design of Artificial Neural Networks for Gamma-Ray Detection

FILIPE ASSUNÇÃO^{©1}, JOÃO CORREIA^{©1}, RÚBEN CONCEIÇÃO², MÁRIO JOÃO MARTINS PIMENTA², BERNARDO TOMÉ², NUNO LOURENÇO¹, AND PENOUSAL MACHADO^{©1}

¹CISUC, Department of Informatics Engineering, University of Coimbra, 3030-290 Coimbra, Portugal ²LIP/IST, 1600-078 Lisbon, Portugal



The take-home messages

Take-home messages What Machine Learning is

- ML is a different computing paradigm of self-taught code that learns from previous examples
- A set of **solutions for current problems**
- A set of **novel approaches** that opens up new types of research
- A technology that **is here to stay** and is already embedded in our lives
- An engineering science with little theoretical grounding but huge collection application examples
- Currently profoundly based on statistical learning theory and function approximation/functional analysis
- A skill-set that will be at the same level as coding for your generation

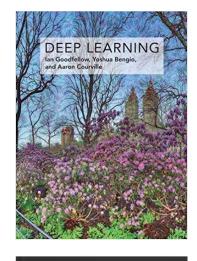
Take-home messages What Machine Learning is not

- Capabel to extrapolate and abstract reasoning beyond tasks ->
 Ultimately bound to the data where it was trained
- A solution for every problem -> Sometimes a nail is just a nail and you only need a hammer
- A magic framework where everything can be done -> There are limits to its application
- A substitute for other computing paradigms -> Learn how to code
- An existential threat to humanity -> Popular culture has created a fantasy idea of AI which has no grounds on the actual technology

Further resources

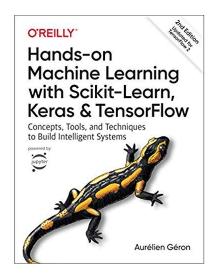
Some of them are free

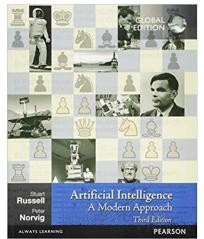
These are free

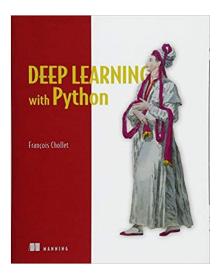


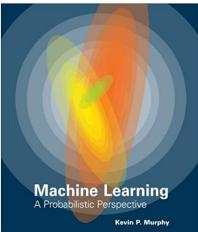
Andriy Burkov THE HUNDRED-PAGE MACHINE LEARNING BOOK

Not free, but very good









For Tomorrow's Tutorial

Tutorial info

- We will be using Google Colab: No need to install anything
 - You are of course more than welcome to set up you own python environment on your computer, but I won't help debugging
- It will be a mix of slides and code-along sessions, followed by breakout rooms with other tutors (Ceu, Fernando)
- If you want to prepare read the first two chapters of The Hundred-Page Machine Learning Book
 - o <u>https://www.dropbox.com/s/lrhtt1wkffnm4fe/Chapter1.pdf?dl=0</u>
 - o <u>https://www.dropbox.com/s/0cprdghmnzpck8h/Chapter2.pdf?dl=0</u>

Thanks Any questions?