Tutorial on Data Analysis

LIP INTERNSHIP PROGRAM, 6TH EDITION, SUMMER 2022

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

LHC Open Data

- the LHC collaborations make good chunks of their data publicly available
 - http://opendata.cern.ch/
- along with tools & software & examples
- for data visualisation and analysis
- from event reconstruction algorithms to machine learning challenges
- via virtual machines (with no need to install different software packages)
- few pointers
 - http://opendata.cern.ch/visualise/events/cms
 - http://www.i2u2.org/elab/cms/event-display/
- you're invited to explore the LHC data also on your own leisure

goals

perform a simple data analysis

- visualise the data
- manipulate data ntuples
- produce, process, and display data histograms
 - select different physics signals
 - plot kinematic distributions, inspect detector/trigger effects
- extract physics parameters from data
 - measure signal yields by performing a likelihood fit
 - inspect statistical and systematic errors
 - (extra) perform a differential measurement

Detector & Event Reconstruction & Visualisation

calorimeters:

measure particle's energy by absorbing it

trackers:

detect trajectory of charged particles

muons: detected in outer

detector layers

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

Lead tungstate E/M Calorimeter (ECAL)

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

LIP Internship Program 2022 nuno@cern.ch ____

a di-electron event

Event Display of a Candidate Electron-Positron Pair with an Invariant Mass of 2.9 TeV

CMS Experiment at LHC, CERN Data recorded: Sat Aug 22 04:13:48 2015 CEST Run/Event: 254833 / 1268846022 Lumi section: 846

di-photons

CMS Experiment at the LHC, CERN Data recorded: 2015-Oct-27 11:51:17.472320 GMT Run / Event / LS: 260043 / 994191540 / 754 m?? ~ 800 GeV CMS CMS Experiment at the LHC, CERN Data recorded: 2015-Sep-11 22:46:54.589056 GMT Run / Event / LS: 256353 / 437637379 / 244

 $\rho = \frac{p}{ZeB}$ • **B** LIP Internship Program 2022

nuno

di-jets

a di-muon event

a $\mu^+\mu^-e^+e^-$ event

processes are explored with many (more) final state particles

the di-muon analysis

the di-muon spectrum $(X \rightarrow \mu\mu)$

50 years of particle physics in one plot!

from detector to physics ...

18

di-muon 'invariant mass' ?

particle identificationsignal in muon chambers

→ it's a muon!

particle trajectory

- muon chambers but especially the silicon tracker

Inear momentum, \underline{p} ≡ (p_x, p_y, p_z)

form 4-momentum of each muon: $\mathbf{P}_{\mu} \equiv (E, p_x, p_y, p_z)$ that of the di-muon pair $\mathbf{P}_{\mu\mu} = \mathbf{P}_{\mu \mathbf{I}} + \mathbf{P}_{\mu \mathbf{2}} = \mathbf{P}_{\mathbf{X} \to \mu \mu}$ invariant mass $\mathbf{P}_{\mu\mu} \cdot \mathbf{P}_{\mu\mu} = \mathbf{M}_{\mu\mu}^2 = (\mathbf{M}_{\mathbf{X}})^2$

the reconstructed di-muon spectrum

feature: variable bin widths, resolution-dependent, properly normalized, doubly-log scales

fit the data

- inspect quality of fit
 - can model be improved?
 - hint: final state radiation $(\mu \rightarrow \mu \gamma)$ may distort shape

- establish a **fit model**
 - signal; Gaussian
 - background: polynominal
- extract signal parameters
 - yield (N $\pm \sigma_N$), mass (m $\pm \sigma_m$)
- estimate **systematic errors**
 - does the choice of fit model affect the measured results ?
 - quantify the systematic variations by employing different models
- quote final measurements
 - N $\pm \sigma_{stat} \pm \sigma_{syst}$

what's the physics process ?

production: strong force

decay: electroweak force

what are the peaks?

Check their measured properties from: <u>http://pdglive.lbl.gov</u>

GAUGE AND HIGGS BOSONS	INSPIRE search	QUARKS	
$Z_{J=1}$		c $I(J^P) = 0(1/2^+)$	
See related reviews:			
Z Boson	PDF	Charge = $\frac{2}{3}e$ Charm = +1	
Anomalous $ZZ\gamma$, $Z\gamma\gamma$, and ZZV Couplings	PDF		
Anomalous W/Z Quartic Couplings (QGCs)	PDF		
			1 ± 0.02 CeV
	 Expand all sections 	1.27 15	± 0.02 Gev
Z MASS 91.1876 \pm 0.0021 GeV	\sim	m_c/m_s MASS RATIO 11.7	$6^{+0.05}_{-0.10}$
1 55. Z Boson		m_b/m_c MASS RATIO 4.58	5 ± 0.01
		$m_b - m_c$ QUARK MASS DIFFERENCE 3.45	$0\pm0.05~{ m GeV}$
55. Z Boson		c T MESONS	NSPIRE search
Revised August 2018 by M. Grünewald (University Coll. Dublin) and A. Gurtu (C. Mumbai).	ERN; TIFR	(including possibly non- $q \ \overline{q}$ states)	
Precision measurements at the Z-boson resonance using electron-positron colliding beams bega in 1989 at the SLC and at LEP. During 1989–95, the four LEP experiments (ALEPH, DELPH L3, OPAL) made high-statistics studies of the production and decay properties of the Z. Althoug the SLD experiment at the SLC collected much lower statistics, it was able to match the precision of LEP experiments in determining the effective electroweak mixing angle $\sin^2 \overline{\theta}_W$ and the rates of Z decay to b- and c-quarks, owing to availability of polarized electron beams, small beam size, an stable beam spot. The Z-boson properties reported in this section may broadly be categorized as:		$J/\psi(1S)$ ${}^{I^G(J^{PC}) = 0^{-}(1^{})}$	
		$J/\psi(1S)$ MASS 3096.900 ± 0.006 MeV	\sim
		$J/\psi(1S)$ WIDTH 92.6 \pm 1.7 keV (S = 1.1)	\sim
• The standard 'lineshape' parameters of the Z consisting of its mass, M_Z , its tota and its partial decay widths $\Gamma(hadrons)$ and $\Gamma(\ell \bar{\ell})$ where $\ell = e, \mu \neq \nu$:	al width, Γ_Z ,	$J/\psi(1S)$ Decay Modes	Expand all decays
 Z asymmetries in leptonic decays and extraction of Z couplings to charged leptons; 	and neutral	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	P(MeV/c)
• The <i>b</i> - and <i>c</i> -quark-related partial widths and charge asymmetries which require	special tech-	Γ_2 virtual $\gamma ightarrow$ hadrons $(13.50 \pm 0.30)\%$	\sim
niques; • Determination of Z decay modes and the search for modes that violate known	concommission	Γ_3 ggg (64.1 ± 1.0)%	\sim
 Determination of 2 decay modes and the search for modes that violate known laws; 	conservation	$\Gamma_4 \qquad \gamma gg \qquad (8.8 \pm 1.1)\%$	\sim
• Average particle multiplicities in hadronic Z decay;		$\Gamma_5 \qquad e^+e^- \ (5.971\pm 0.032)\%$	1548 💛
• Z anomalous couplings.		$\Gamma_6 \qquad e^+e^-\gamma \qquad \qquad \ \ \ \ \ \ \ \ \ \ \ \ $	1548 💛
The effective vector and axial-vector coupling constants describing the Z-to-ferm are also measured in $n\bar{n}$ and en collisions at the Tevatron and at HEBA. The correspondence of the tevatron and the term of ter	ion coupling	$\Gamma_7 \qquad \mu^+\mu^-$ (5.961 ± 0.033)%	1545 💛
section formulae are given in Section 39 (Cross-section formulae for specific processes) and Section		Decays involving hadronic resonances	
16 (Structure Functions) in this <i>Review</i> . In this minireview, we concentrate on the min e^+e^- collisions at LEP and SLC	neasurements	Decays into stable hadrons	
The standard 'lineshape' parameters of the Z are determined from an analysis of the production cross sections of these final states in e^+e^- collisions. The $Z \to \nu \overline{\nu}(\gamma)$ state is identified directly		➤ Radiative decays	
		 Dalitz decays 	
from the total width. Inclusion in this analysis of the forward-backward asymmetry	y of charged	➤ Weak decays	
leptons, $A_{FB}^{(0,\ell)}$, of the τ polarization, $P(\tau)$, and its forward-backward asymmetry, $P(\tau)$ the separate determination of the effective vector (\overline{g}_V) and axial vector (\overline{g}_A) coupling	$(\tau)^{fb}$, enables ngs of the Z	• Charge conjugation (C), Parity (P), Lepton Family number (LF) violating modes	

to these leptons and the ratio $(\overline{a}_{y}/\overline{a}_{z})$, which is related to the effective electroweak mixing angle

Other decays

Cross section

an effective area of interaction unit: barn, $1b = 10^{-28} \text{ m}^2 = 100 \text{ fm}^2$

- N: fitted signal yield
- A: detector acceptance from simulation
- E: detector reconstruction and trigger efficiencies (simulation or data-driven)
- L: integrated sample luminosity

(extra) statistics

measurement: a lifetime example

statistics

- consider lifetime (or decay rate) distribution
- suppose we have n data points (measurements) t_1, \ldots
- likelihood function

$$L(\tau) = \prod_{i=1}^{n} \frac{1}{\tau} e^{-t_i/\tau}$$

 $f(t;\tau) = \frac{1}{\tau}e^{-t/\tau}$

$$\iota_1,\ldots,\iota_n$$

maximum likelihood method

• value of τ for which L(τ) is maximum = maximizes log-likelihood

$$\ln L(\tau) = \sum_{i=1}^{n} \ln f(t_i; \tau) = \sum_{i=1}^{n} \left(\ln \frac{1}{\tau} - \frac{t_i}{\tau} \right)$$

• can find its maximum as $\frac{\partial \ln L(\tau)}{\partial \tau} = 0 \rightarrow \hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} t_i$
• mean: $E[t] = \int_0^\infty t \frac{1}{\tau} e^{-t/\tau} dt = \tau$ variance: $V[t] = \int_0^\infty (t - \tau)^2 \frac{1}{\tau} e^{-t/\tau} dt = \tau^2$
• for ML estimator $E[\hat{\tau}] = E\left[\frac{1}{n} \sum_{i=1}^{n} t_i\right] = \frac{1}{n} \sum_{i=1}^{n} E[t_i] = \tau \rightarrow b = E[\hat{\tau}] - \tau = 0$

 $V[\hat{\tau}] = V\left[\frac{1}{n}\sum_{i=1}^{n}t_i\right] = \frac{1}{n^2}\sum_{i=1}^{n}V[t_i] = \frac{\tau^2}{n} \longrightarrow \quad \sigma_{\hat{\tau}} = \frac{\tau}{\sqrt{n}}$ LiP Internship Program 2022, nuno@cern.ch

maximum likelihood

• expand $\ln L(\theta)$ about its maximum

$$\ln L(\theta) = \ln L(\hat{\theta}) + \left[\frac{\partial \ln L}{\partial \theta}\right]_{\theta=\hat{\theta}} (\theta - \hat{\theta}) + \frac{1}{2!} \left[\frac{\partial^2 \ln L}{\partial \theta^2}\right]_{\theta=\hat{\theta}} (\theta - \hat{\theta})^2 + \dots$$

• first term is ln L_{max}, second term is zero, third term approximate

 $\hat{\tau} = 0.85^{+0.52}_{-0.30}$

$$\ln L(\theta) \approx \ln L_{\max} - \frac{(\theta - \hat{\theta})^2}{2\widehat{\sigma^2}_{\hat{\theta}}} \qquad \left| \ln L(\hat{\theta} \pm \hat{\sigma}_{\hat{\theta}}) \approx \ln L_{\max} - \frac{1}{2} \right| \qquad \hat{V}[\hat{\theta}] = -\left(\frac{\partial^2 \ln L}{\partial \theta^2}\right)^{-1} \Big|_{\theta = \hat{\theta}}$$

- error estimate: change θ away from $\hat{\theta}$ until ln L decreases by 1/2
- I σ (68.3% CL) confidence interval

LIP Internship Program 2022, nuno@cern.ch —

$$\ln L(\theta) = \ln L(\hat{\theta}) - \frac{1}{2} \quad \Rightarrow \quad [\hat{\theta} - \sigma_{\hat{\theta}}, \hat{\theta} + \sigma_{\hat{\theta}}]$$

systematic uncertainties

 statistical uncertainty on T is obtained from the maximum likelihood fit to the data

$$L(t|\sigma_t,\tau) = \frac{1}{\mathcal{N}} \cdot \left[\frac{1}{\tau} e^{-\frac{t}{\tau}} \theta(t) \otimes G(t;\sigma_t) \right] \cdot \mathcal{E}(t) + \mathsf{L}(\mathsf{Background})$$

 systematic uncertainty quantifies any uncertainty in the procedure going from the raw data to a published result

Sources of systematic error:

- resolution calibration σ_t
- resolution function, G(t)
- t-efficiency $\varepsilon(t)$
- background model

Inputs from Simulation and Data-driven

 $c\tau = 477.6 \pm 24.2 \, (stat.) \pm 17.6 \, (syst.) \, \mu m$

(extra) ingredients of a physics measurement

searching for an ultra-rare decay: $B \rightarrow \mu \mu$

1. ONLINE SELECTION (TRIGGER)

Dimuon Trigger

- L1 Hardware Trigger
 - p_T>3 GeV (few kHz)
- HLT Full tracking and vertexing
- ILT B_s→µµ
 - Leading and sub-leading μ p_T>3,4 (4,4) GeV |η_{μμ}|<1.8 (1.8<|η_{μμ}|<2.2)</p>
 - p_T (μμ)>5 (4.8-6) GeV
 - 4.8 <m(μμ)< 6.0 GeV</p>
 - P(χ²/dof) >0.5%

searching for an ultra-rare decay: $B \rightarrow \mu \mu$

1. ONLINE SELECTION (TRIGGER)

2. BLIND THE DATA (AVOID BIAS)

analysis procedure and event selection developed without inspecting the data in region where signal is expected

"box opening" only later, at final analysis stages

searching for an ultra-rare decay: $\mathbf{B} \rightarrow \mu \mu$

searching for an ultra-rare decay: $\mathbf{B} \rightarrow \mu \mu$

searching for an ultra-rare decay: $\mathbf{B} \rightarrow \mu \mu$

ONLINE SELECTION (TRIGGER)
 BLIND THE DATA (AVOID BIAS)
 MULTIVARIATE SELECTION
 FIT THE DATA (LIKELIHOOD)
 STATISTICAL SIGNIFICANCE

is the observed excess a genuine signal, or just a fluctuation of the background?

searching for an ultra-rare decay: $B \rightarrow \mu \mu$

- 1. ONLINE SELECTION (TRIGGER)
- 2. BLIND THE DATA (AVOID BIAS)
- **3.** MULTIVARIATE SELECTION
- 4. FIT THE DATA (LIKELIHOOD)
- 5. STATISTICAL SIGNIFICANCE
- **6. EXTRACT MEASUREMENT**

searching for an ultra-rare decay: $B \rightarrow \mu \mu$

- ONLINE SELECTION (TRIGGER)
 BLIND THE DATA (AVOID BIAS)
 MULTIVARIATE SELECTION
 FIT THE DATA (LIKELIHOOD)
 STATISTICAL SIGNIFICANCE
 EXTRACT MEASUREMENT
- 7. COMPARE TO THEORY

nuno@cern.ch

Needles in haystack

 $BR(B_s \rightarrow \mu\mu) = (3.0^{+0.9}_{-0.8} \text{ (stat)}^{+0.6}_{-0.4} \text{ (syst)}) \times 10^{-9}$