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ALICE and LHC program time line

• ALICE installed major upgrades for Run 3 

• 50-100x larger data rate, better pointing resolution


• commissioning ongoing; start of beams imminent


• first heavy ion run: end of 2022


• Additional upgrades planned for Run 4


• ITS 3: replace inner tracking layers and beam pipe


• Forward Calorimeter


• … and beyond: ALICE 3
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ALICE upgrades in Long Shutdown 2
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Run 3/4: collect 13 nb-1 Pb-Pb: 50x more minimum bias data; 10x more triggered data

New ITS and MFT

Full pixel detector

Improved spatial resolution

Non-prompt J/𝜓

TPC: GEM readout

Continuous readout

Fast Interaction Trigger Online event processing



Future upgrades: ITS 3 and FoCal
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Figure 7: Layout of the ITS3 Inner Barrel. The figure shows the two half-barrels mounted
around the beam pipe.

Figure 8: Layout of the ITS3 Inner Barrel. Two end-wheels and the CYSS provide precise
position of the detector relative to the beampipe. On the C-side, the cables first exit from the
C-side End-Wheel, then they are folded to the outside of the CYSS and routed towards the
A-side.

the baseplate, brings it in position on the carbon foam spacers inside the CYSS. A thin layer
of glue, at the interface, provides the mechanical fixation of the half-layer. The two spacers,
positioned at the two edges of the half layer, provide the fixation interface for the 5mm wide
area at the chip edge, where the mechanical and the electrical connection to the FPC are made .
A second set of spacers is then glued to the internal surface of the half-layer 2. The same proce-
dure is then repeated for half-layers 1 and 0, respectively, using their corresponding cylindrical
vacuum chucks and carbon foam spacers with the appropriate curvature radii.

The main layout and geometrical parameters of the ITS3 Inner Barrel are summarized in Tab. 1
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ITS 3: ultra-light, fully cylindrical tracking layers

Longitudinal profile (2γ showers)

LoI: CERN-LHCC-2020-009

- High-granularity Si-W EM calorimeter for 
photons and π0


- Small-x physics in pp and p-Pb

- Forward 𝜋0 in Pb-Pb


3.4 < η < 5.8

FoCal-E

FoCal-H

Improved performance for 

- Heavy flavour reconstruction

- Di-lepton measurements

LoI: CERN-LHCC-2019-018

FoCal: high-granularity foward calorimeter

https://inspirehep.net/literature/1805025
https://cds.cern.ch/record/2703140?ln=en


LHC Run 5 and 6: ALICE 3
• Compact all-silicon tracker  

with high-resolution vertex detector


• Particle Identification over large 
acceptance: muons, electrons, hadrons, 
photons


• Fast read-out and online processing
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For LHC Run 5 & 6

Improvement of  
pointing resolution 

and effective 
statistics

Letter of Intent: LHCC-2022-009

https://cds.cern.ch/record/2803563


 Heavy ion collisions: Little Bangs
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MADAI

Stages of the collision: initial stages — QGP/fluid stage — hadron formation (freeze out)

‘Little Bang’: recreate primordial matter in the laboratory

https://madai-public.cs.unc.edu/visualization/heavy-ion-collisions/
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Characterise shape by harmonics:
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MC event: location of nucleons

η/s = 0
No viscosity

η/s = 0.16
Low viscosity

Schenke and Jeon, 
Phys.Rev.Lett.106:042301

Pressure gradients: expansion of the QGP
Initial state spatial anisotropies εn: non-uniform expansion

Azimuthal anisotropy: initial and final states



Azimuthal anisotropy: initial and final states
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Initial state spatial anisotropies εn are transferred into  
final state momentum anisotropies vn  

by pressure gradients, flow of the Quark Gluon Plasma
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Anisotropic flow: initial state and QGP expansion
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Mass-dependence of v2 measures flow velocity

JHEP09 (2018) 006

Elliptic flow v2
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A global fit to anisotropic flow: main results
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J. E. Bernhard et al, arXiv: 1605.03954
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Viscosity of the QGP

Global fit to large data set: 
constrains initial state geometry and 
transport properties at the same time

Viscosity close to lower bound

Comparison to common liquids

Liquid

QGP has a very small ‘specific viscosity’

Gas



Messengers of the Plasma: soft and hard processes
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Soft probes: particles produced by the QGP 
Azimuthal anisotropy


Light-flavour particle ratios

Thermal radiation

Heavy quarks charm and beauty:

• m >> T: Only produced in initial hard scattering

• Flavour conserved during evolution

Hard scattering products probe the QGP as they propagate out



Nuclear modification: Pb+Pb
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Pb+Pb: clear suppression (RAA < 1): parton energy loss

ALICE, PLB720, 52 
CMS, EPJC, 72, 1945 

ATLAS, arXiv:1504.04337

Low pT:  
soft production,

Npart scaling

Energy loss

RAA < 1

Energy loss



Nuclear modification factor: light and heavy quarks
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Heavy flavour: D mesonsLight flavour: pions, charged particles

ALICE, JHEP 01 (2022) 174
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ALI−PUB−501948
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D mesons  = 5.02 TeVNNsPb, −Pb 10%−0
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Low pT: no change/enhancement: 
charm conservation + energy loss

High-pT suppression:

due to energy loss/thermalisation

https://link.springer.com/article/10.1007/JHEP01(2022)174


Heavy quark azimuthal anisotropy
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Azimuthal anisotropy v2:

Anisotropy generated by 
energy loss differences

dN
dϕ

∝ 1 + 2 v2 cos 2(φ − ψ)

JHEP 01 (2022) 174

Azimuthal anisotropy:

Full effect generated by interactions

D meson elliptic flow v2

Initial production 
is isotropic

Nuclear overlap  
non-central collisions

https://link.springer.com/article/10.1007/JHEP01(2022)174


Determining the transport coefficients
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Heavy flavor transport coefficient: Bayesian fit
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Heavy quark transport: some open questions

• Interplay/relation between:

• Diffusion/drag: elastic processes — dominant at low pT

• Inelastic processes: gluon radiation — dominant at 

high pT

• Approach to thermalisation:


• Large charm v2 ⟹ close to thermalisation?


• Expect larger thermalisation time for beauty

• Role of hadronisation: dependence on light quark v2 

via quark coalescence?
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Heavy flavour transport: performance for run 3 and beyond

• Heavy quarks: access to quark transport at hadron level 
• Expect beauty thermalisation slower than charm — smaller v2


• Run 3 and 4: measure Λc v2; large uncertainty for Λb


• ALICE 3: precision measurements Λc and Λb v2
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Hadronisation and baryon production
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Multi-charm baryon detection

• \
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New technique: strangeness tracking  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Probing the QGP with jets at LHC
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ALICE

η

ϕ

Very clear signals at high pT: jets stand out above uncorrelated ‘soft’ background



Energy loss: di-jet asymmetry
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Energy fraction of second jet

xJ =
pT,1

pT,2

ATLAS, PLB 774, 379

Single event: pT not balanced!
pp: peak at 1 — balanced jets

PbPb: shift towards lower values

Di-jet energy imbalance: jets lose energy as they propagate through the plasma



In-medium broadening: DD̅ azimuthal correlations

• Angular decorrelation directly probes QGP scattering 
• Signal strongest at low pT


• Very challenging measurement:  
need good purity, efficiency and η coverage 
→ ALICE 3
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M
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https://arxiv.org/pdf/1305.3823


Direct photon production

Main sources:


• High pT: hard scattering; quark-gluon Compton 
process


• Low pT: thermal radiation
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ALICE, PLB 754, 235
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Large background: decay photons from 𝜋0, η, …

⇒ Challenging measurement

Hint of excess at low pT in central collisions 
Limited by systematic uncertainties

http://www.sciencedirect.com/science/article/pii/S0370269316000320


Forward photons with FoCal 
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Constrain gluon density in nuclei 
over a broad range:  

x ~10-5 - 10-2 at small Q2
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Di-lepton emission: virtual photons

• Virtual photons e+e- pairs

• Vector meson spectral functions sensitive  

to chiral symmetry restoration


•  removes light flavour  
decay background


• Remaining background: heavy flavour pairs

mee > 1 GeV/c2
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Very low mass:  
𝜋0 decay background 

conductivity

ω/𝜑 region: 
chiral symmetry and  

𝜌-a1 mixing

Large mass: 
thermal emission, 

 early times

Di-lepton mass distribution



Run 3 and 4: temperature of the QGP
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Di-electron spectra
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Figure 13: Excess e+e� invariant mass spectrum for 0 –10 % most central Pb–Pb collisions atp
sNN = 5.5 TeV, 2.5⇥ 109 events (Lint = 3 nb�1). The left and right panels refer to the LS2

upgrade (ITS2) and the LS3 upgrade (ITS3) respectively. The green boxes show the system-
atic uncertainties from the combinatorial background subtraction, the magenta boxes indicate
systematic uncertainties related to the subtraction of the cocktail and charm contribution.

• The enhanced low-pT tracking capability of the ITS3 substantially improves the recon-
struction efficiency of photon conversions in which one of the particles of the dielectron
pair often has very low momentum. This reduces the combinatorial background.

• The improved pointing resolution of the ITS3 enables efficient tagging of electrons from
semi-leptonic charm decays, which form a substantial physical background to the pair-
yield and dominate the invariant-mass spectrum at Mee > 1.1 GeV/c2. A tight cut on the
quadratic sum of the impact parameters of the two electrons reduces the charm background
by a factor of about two. This reduces the systematic uncertainties on the thermal excess
yield related to the subtraction of the charm contribution.

The dominant sources of systematic uncertainties in the dielectron measurements are the large
combinatorial and physical backgrounds. The combinatorial background is estimated and sta-
tistically subtracted using the distribution of like-sign pairs from the same event. The latter is
corrected for the different detector acceptance for unlike- and like-sign pairs with the correction
factor R calculated with mixed-event yields [19, 20, 21]. The systematic uncertainty on R is
propagated to the inclusive dilepton signal uncertainty as sS/S = sR/R · (B/S). Therefore, the
increase of S/B resulting from the reduced conversion probability and the improved conver-
sion rejection with ITS3 determine a linear decrease of the systematic uncertainty. The relative
uncertainty on the background sR/R was estimated to be 0.02%. An additional systematic un-
certainty of 10% is added in quadrature to take into account the track reconstruction and particle
identification uncertainties.

In the following, the results of the physics performance study for 2.5 billion central (0 –10 %)
Pb–Pb collisions at

p
sNN = 5.5 TeV (Lint = 3 nb�1) collected with the solenoid magnetic

field at the reduced value of 0.2 T are discussed. The excess e+e� invariant-mass spectrum,
after subtraction of the combinatorial and charm background, is shown in Fig. 13 for ITS2 (left
panel) and ITS3 (right panel). The signal dielectron pairs considered here include thermal radi-
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Figure 13: Excess e+e� invariant mass spectrum for 0 –10 % most central Pb–Pb collisions atp
sNN = 5.5 TeV, 2.5⇥ 109 events (Lint = 3 nb�1). The left and right panels refer to the LS2

upgrade (ITS2) and the LS3 upgrade (ITS3) respectively. The green boxes show the system-
atic uncertainties from the combinatorial background subtraction, the magenta boxes indicate
systematic uncertainties related to the subtraction of the cocktail and charm contribution.

• The enhanced low-pT tracking capability of the ITS3 substantially improves the recon-
struction efficiency of photon conversions in which one of the particles of the dielectron
pair often has very low momentum. This reduces the combinatorial background.

• The improved pointing resolution of the ITS3 enables efficient tagging of electrons from
semi-leptonic charm decays, which form a substantial physical background to the pair-
yield and dominate the invariant-mass spectrum at Mee > 1.1 GeV/c2. A tight cut on the
quadratic sum of the impact parameters of the two electrons reduces the charm background
by a factor of about two. This reduces the systematic uncertainties on the thermal excess
yield related to the subtraction of the charm contribution.

The dominant sources of systematic uncertainties in the dielectron measurements are the large
combinatorial and physical backgrounds. The combinatorial background is estimated and sta-
tistically subtracted using the distribution of like-sign pairs from the same event. The latter is
corrected for the different detector acceptance for unlike- and like-sign pairs with the correction
factor R calculated with mixed-event yields [19, 20, 21]. The systematic uncertainty on R is
propagated to the inclusive dilepton signal uncertainty as sS/S = sR/R · (B/S). Therefore, the
increase of S/B resulting from the reduced conversion probability and the improved conver-
sion rejection with ITS3 determine a linear decrease of the systematic uncertainty. The relative
uncertainty on the background sR/R was estimated to be 0.02%. An additional systematic un-
certainty of 10% is added in quadrature to take into account the track reconstruction and particle
identification uncertainties.

In the following, the results of the physics performance study for 2.5 billion central (0 –10 %)
Pb–Pb collisions at

p
sNN = 5.5 TeV (Lint = 3 nb�1) collected with the solenoid magnetic

field at the reduced value of 0.2 T are discussed. The excess e+e� invariant-mass spectrum,
after subtraction of the combinatorial and charm background, is shown in Fig. 13 for ITS2 (left
panel) and ITS3 (right panel). The signal dielectron pairs considered here include thermal radi-
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Figure 14: Expected relative uncertainty of the extraction of the T parameter from a fit to the
invariant mass excess spectrum in 1.1 <Mee < 2.0 GeV/c2 (see text). The results are shown for
the ITS2 and ITS3 scenarios, with a tight cut on the quadratic sum of the impact parameters
of the lepton pair, and for 0 –10 % event centrality. Error bars show the statistical uncertain-
ties. The green boxes show the systematic uncertainties from the combinatorial background
subtraction, the magenta boxes indicate systematic uncertainties related to the subtraction of
the charm-decay electron contribution.

ation from the QGP and the medium-modified spectral function of the r0 meson. Information
on the early temperature of the system can be derived from the invariant-mass dependence of
the dilepton yield at masses Mee > 1.1 GeV/c2 where the yield is dominated by the thermal
radiation from the QGP if the charm component can be effectively reduced. In order to quan-
tify the sensitivity of the anticipated measurement, an exponential fit to the simulated spectra
in the invariant mass region 1.1 < Mee < 2.0 GeV/c2 was used. The fit function employed was
dNee/dMee µ M

3/2
ee exp(�Mee/Tfit). The fit parameter Tfit is compared to Treal, which is derived

from the same fit to the input thermal spectrum. The ratio Tfit/Treal for Pb–Pb collisions in the
0 –10 % centrality class is shown in Fig. 14. With respect to the ITS2, the ITS3 upgrade reduces

• the statistical uncertainty by a factor 1.3;

• the systematic uncertainty from the subtraction of the combinatorial background by a fac-
tor 2;

• the systematic uncertainty from the subtraction of the light-hadron and charm decay back-
grounds by a factor 2.
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ITS3 improves systematic uncertainty 

on T by a factor 2

Upgraded ITS ITS3

Dielectron measurements require:

- Excellent PID

- Low material budget to limit conversion background

- Good pointing resolution: reject heavy flavour backgrounds

First measurements at LHC: Run 3 and 4



Dielectrons: chiral symmetry and thermal emission

• HF decays produce correlated background

• Large for 

• Improved rejection in ALICE 3

mee ≳ 1 GeV/c2
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Conclusion

• Heavy-ion collisions allow to study properties of bulk QCD 
• Large azimuthal asymmetry for light and heavy flavours 

• The QGP at LHC has a viscosity close to the lower bound

• Charm diffusion and approach to thermalisation


• Large energy loss for high-momentum probes 
• Radiative and collisions energy loss

• Transport properties in line with lattice QCD and pQCD expectations


• Much more to come in Run 3 and beyond 
• Temperature of the QGP before hadronisation from dielectron emission

• Understanding heavy quark thermalisation

• Impact of hadronisation on main observables

• ….
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Extra slides
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ALICE 3 Vertex Detector

• Conceptual study of iris tracker 
• wafer-sized, bent MAPS

• rotary petals for secondary vacuum 

thin walls to minimise material

• Challenging design: 

R&D programme on  
mechanics, cooling, radiation tolerance
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Nuclear states: charm-deuteron

32

0.004− 0.002− 0 0.002 0.004
 deuteron (cm)zDCA

0

0.005

0.01

0.015

0.02

0.025

Pr
ob

ab
ilit

y

dPrimary 

dc ← d

ALICE 3 study
| < 1.44ηLayout v1, |

PYTHIA 8.2 Angantyr
 = 5.52 TeVNNsPb −Pb

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

)2cInvariant mass (GeV/

210

310

C
ou

nt
s

Signal
Primary background
Correlated background

ALICE 3 study
| < 1.44ηLayout v1, |

 = 5.52 TeVNNsPb −PYTHIA 8.2 Angantyr, Pb

S/B = 0.41
Significance = 51.2

Impact parameter distributions Invariant mass distribution

Decay channel:

Unique sensitivity to undiscovered charm-nuclei: 
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Hadron formation

• Multi-charm baryons: unique probe of hadron formation

• Require production of multiple charm quarks


• Single-scattering contribution very small (unlike e.g. J/𝜓)


• Statistical hadronisation model:  
very large enhancement in AA


• Charm out of equilibrium: yields scale with  for  
n-charm states 


• How is thermalisation approached microscopically?

gn
c

33

x 100

x 1000

Single and double-charm baryons: Λc, Ξc, Ξcc, Ωcc 

Multi-flavour mesons: Bc, Ds, Bs, … 

Tightly/weakly bound states J/𝜓, , 


Large mass light flavour particles: nuclei

χc1(3872) T+
cc

Measure additional states to test physical picture:

1x charm
2x charm
3x charm

Run 5 & 6

Run 3 & 4

cd

ct
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Ξcc
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Hadron yields in statistical hadronisation model
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DD* momentum correlations

: nature of D0D*0 χc1(3872)

DD* momentum correlation
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Figure 1: Distribution of D0D0⇡+ mass. Distribution of D0D0⇡+ mass where the contribu-
tion of the non-D0 background has been statistically subtracted. The result of the fit described
in the text is overlaid.

The function is built under two assumptions. Firstly, that the newly observed state has
quantum numbers JP = 1+ and isospin I = 0 in accordance with the theoretical expecta-
tion for the T+

cc ground state. Secondly, that the T+
cc state is strongly coupled to the D⇤D

channel. The derivation of FU relies on the isospin symmetry for T+
cc! D⇤D decays

and explicitly accounts for the energy dependency of the T+
cc! D0D0⇡+, T+

cc! D0D+⇡0

and T+
cc! D0D+� decay widths as required by unitarity. Similarly to the FBW profile,

the FU function has two parameters: the peak locationmU, defined as the mass value where
the real part of the complex amplitude vanishes, and the absolute value of the coupling
constant g for the T+

cc! D⇤D decay.
The detector mass resolution, R, is modelled with the sum of two Gaussian functions

with a common mean, and parameters taken from simulation, see Methods. The widths
of the Gaussian functions are corrected by a factor of 1.05, that accounts for a small
residual di↵erence between simulation and data [39,104,105]. The root mean square of
the resolution function is around 400 keV/c2.

A study of the D0⇡+ mass distribution for selected D0D0⇡+ combinations in the region
above the D⇤0D+ mass threshold and below 3.9GeV/c2 shows that approximately 90% of all

3

• Several exotic heavy flavour states identified


• Loosely bound meson molecule or tightly bound 
tetraquark?


• Study binding potential with final state interactions 
‘femtoscopic correlations’

vs



ALICE 3 | March 7, 2022 | MvL, jkl
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Exotic bound states

• Exotic states: , , …


• Include double charm states, potentially weakly-bound states

• Investigate structure with femtoscopic momentum correlations

• Understand dissociation and regeneration in QGP

χc1(3872) T+
cc

A Esposito et al, EPJ.C 86, 669

Dissociation and regeneration vs multiplicity
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Azimuthal anisotropy: two mechanisms

36

Hydrodynamical expansion Parton energy loss
Conversion of pressure gradients into momentum space anisotropy

More energy loss along  
long axis than short axis

2ˆ~ LqE Smed αΔ

Expansion

Hadronisation Energy loss

Dominant effect for late formation times:
light flavour at low pT

Dominant effect at high pT

Dominant effect for early formation times:
heavy flavour, high pT probes

Anisotropy due to energy loss and path length differences

Lo
ng
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Azimuthal anisotropy global fit: input
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J. E. Bernhard et al, arXiv: 1605.03954

Experimental input: yields, mean pT and harmonic flow vs pT

Model: initial anisotropies + medium response

Explores a large parameter space to investigate reliability/robustness of the modeling



Parton interactions in the medium: Collisional + radiative

38

‘Improved Langevin model’:

Drag Thermal force Radiative loss

Y. Xu et al, PRC 97, 014907

Different formulations exist in literature — use this as an example

(fluctuations  
are modelled as well)(often not used/present 

 in light flavour models)

Over time: approach thermalisation

‘limiting behaviour’

Transport coefficients:
Drag

Transverse and longitudinal  
momentum diffusion



Mass and momentum dependence of transport 
coefficients

39

⟨r2⟩ = 6 Ds tHeavy quark spatial  
diffusion coefficient Ds

τQ = (mQ/T) DsRelaxation time

Rapp et al, arXiv:1803.03824

Drag coefficient

Mass independent, limit p → 0

γ =
T

mQ Ds

Other key quantities do depend on mass:

⇒ Beauty thermalises more slowly than charm

Xu, Y and Bass, S er at, PRC 99, 1, 014902Beauty vs charm: important handle on understanding phenomenology

https://arxiv.org/pdf/1803.03824.pdf


Hadronisation and baryon production
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EPOS LHC

ALIC
E, arXiv:1606.07424, arXiv:1307.6796, arXiv:1512.07227

particle yields in multiplicity bins

Fraction of strange hadrons increases  
with multiplicity

Large effect for multi-strange Ξ and Ω

Similar enhancement in PbPb  
has been interpreted as thermalisation;  

global equilibration of the strangeness yield. 
Are they related?

N
ature P

hysics

http://dx.doi.org/10.1038/nphys4111


Energy loss: di-jet asymmetry

41

Transverse energy map of 1 event

Use pT balance to measure energy loss
i.e. transport of energy outside jet cone

Subleading jet energy fraction xJ =
pT,1

pT,2
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Qualitatively in line with bremsstrahlung expectation
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dx

∝ ln(E)
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∝ EStrong coupling:
Chesler and Rajagopal, PRD 90, 025033

ATLAS-CONF-2020-017

Pb—Pb distribution shifted to lower energies: energy loss due to interactions
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ALICE 3 Physics motivation cont’d

• Jet quenching

• Electrical conductivity  

with very low pT dileptons

• Small collision systems:  

collectivity, MPIs, rare events

• Ultra-soft photons: Low’s theorem

• Resonance production in UPC


• ALP search in 𝛾𝛾


•  decaysΛb →3 He

42

ALP search

Ultra-soft photons

𝜌’ acceptance

Λb →3 He


