Studying the Quark Gluon Plasma (with ALICE) at the LHC Current results and future plans

Marco van Leeuwen, Nikhef, Utrecht University

LIP seminar (online) 31 March 2022

ALICE and LHC program time line

ALICE upgrades in Long Shutdown 2

New ITS and MFT

Full pixel detector Improved spatial resolution Fast Interaction Trigger

Run 3/4: collect 13 nb⁻¹ Pb-Pb: 50x more minimum bias data; 10x more triggered data

TPC: GEM readout

GEM 1

Future upgrades: ITS 3 and FoCal

ITS 3: ultra-light, fully cylindrical tracking layers FoCal: high-granularity foward calorimeter

Lol: <u>CERN-LHCC-2019-018</u>

Improved performance for

- Heavy flavour reconstruction
- Di-lepton measurements

- High-granularity Si-W EM calorimeter for photons and π^0
- Small-x physics in pp and p-Pb
- Forward π^0 in Pb-Pb

- Compact all-silicon tracker with high-resolution vertex detector
- photons

LHC Run 5 and 6: ALICE 3

Letter of Intent: LHCC-2022-009

Heavy ion collisions: Little Bangs

Time:0.08

Stages of the collision: initial stages — QGP/fluid stage — hadron formation (freeze out) 'Little Bang': recreate primordial matter in the laboratory

|--|

<u>MADAI</u>

Azimuthal anisotropy: initial and final states

t = 0.4 fm

Pressure gradients: expansion of the QGP Initial state spatial anisotropies ε_n : non-uniform expansion

Azimuthal anisotropy: initial and final states

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Azimuthal distribution single event

Sum over many events

Elliptic flow v₂

Mass-dependence of v₂ measures flow velocity

A global fit to anisotropic flow: main results

J. E. Bernhard et al, arXiv: 1605.03954

constrains initial state geometry and transport properties at the same time **Viscosity close to lower bound**

QGP has a very small 'specific viscosity'

Messengers of the Plasma: soft and hard processes

Soft probes: particles produced by the QGP

Azimuthal anisotropy Light-flavour particle ratios Thermal radiation

Hard scattering products probe the QGP as they propagate out

Heavy quarks charm and beauty:

- m >> T: Only produced in initial hard scattering
- Flavour conserved during evolution

Nuclear modification: Pb+Pb

Charged particle p_T spectra

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

Nuclear modification factor

Pb+Pb: clear suppression ($R_{AA} < 1$): parton energy loss

Nuclear modification factor: light and heavy quarks

Light flavour: pions, charged particles

- 0.1

Heavy flavour: D mesons

Heavy quark azimuthal anisotropy

Nuclear overlap non-central collisions

 $\Delta E_{med} \sim \alpha_s \hat{q} L^2$

Anisotropy generated by energy loss differences

Initial production is isotropic

Azimuthal anisotropy v₂:

 $\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\varphi - \psi)$

Azimuthal anisotropy: Full effect generated by interactions

Determining the transport coefficients

Run model for different parameter settings

\Rightarrow interpolate with Gaussian process

emulator

Posterior

Range of model settings that agree with data

Heavy flavor transport coefficient: Bayesian fit

Data constrain transport properties of the QGP Results agree with lattice QCD/pQCD expectations

Heavy quark transport: some open questions

Nuclear modification and v₂ of light and heavy flavour qualitatively understood

Some open questions remain:

- Interplay/relation between:
 - Diffusion/drag: elastic processes dominant at low p_T
 - **Inelastic processes:** gluon radiation dominant at high p_T
- Approach to **thermalisation**:
 - Large charm $v_2 \implies$ close to thermalisation?
 - Expect larger thermalisation time for beauty
 - **Role of hadronisation**: dependence on light quark v₂ via quark coalescence?

Heavy flavour transport: performance for run 3 and beyond

- Heavy quarks: access to quark transport at hadron level
 - Expect beauty thermalisation slower than charm smaller v_2 $\tau_O = (m_O/T) D_s$
- Run 3 and 4: measure $\Lambda_c v_2$; large uncertainty for Λ_b
- ALICE 3: precision measurements Λ_c and $\Lambda_b v_2$

relaxation time

Hadronisation and baryon production

Charm baryon/meson ratio

Charm baryon production enhanced in pp, AA compared to e⁺e⁻

Multi-charm baryons: unique probe

- Large expected enhancement
- Theoretically clean: charm quarks conserved

Pointing of Ξ baryon provides high selectivity

 $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} + \pi^{+} \qquad \Xi_{c}^{+} \rightarrow \Xi^{-} + 2\pi^{+}$

Multi-charm baryon detection

Large enhancements: unique sensitivity to thermalisation and hadronisation dynamics

Unique access in Pb-Pb collisions with ALICE 3

Probing the QGP with jets at LHC

Very clear signals at high p_T: jets stand out above uncorrelated 'soft' background

Energy loss: di-jet asymmetry

Di-jet energy imbalance: jets lose energy as they propagate through the plasma

Energy fraction of second jet

pp: peak at 1 — balanced jets PbPb: shift towards lower values

In-medium broadening: DD azimuthal correlations

Angular decorrelation directly probes QGP scattering

- Signal strongest at low p⊤
- Very challenging measurement: need good purity, efficiency and η coverage
 → ALICE 3

ALICE 3 projection: $D\overline{D}$ correlations

 $\Delta \phi$ (rad)

Direct photon production

Large background: decay photons from π^0 , η , ... ⇒ Challenging measurement

Main sources:

- High p_T: hard scattering; quark-gluon Compton process
- Low p_T: thermal radiation

Hint of excess at low p_T in central collisions Limited by systematic uncertainties

ALI-PUB-97767

Forward photons with FoCal

Signal photon fraction

Projected photon uncertainties

High granularity to reject decay background

High precision direct photon measurement down to low p_T

Projected PDF uncertainties

Constrain gluon density in nuclei over a broad range: $x \sim 10^{-5} - 10^{-2}$ at small Q²

Di-lepton emission: virtual photons

- Virtual photons e⁺e⁻ pairs
- Vector meson spectral functions sensitive to chiral symmetry restoration
- $m_{ee} > 1 \text{ GeV}/c^2$ removes light flavour decay background
- Remaining background: heavy flavour pairs

Di-lepton mass distribution

conductivity

 ρ -a₁ mixing

thermal emission, early times

Run 3 and 4: temperature of the QGP

Di-electron spectra

Upgraded ITS

Dielectron measurements require:

- Excellent PID
- Low material budget to limit conversion background
- Good pointing resolution: reject heavy flavour backgrounds -

First measurements at LHC: Run 3 and 4

Di-lepton temperature fit

ITS3 improves systematic uncertainty on *T* by a factor 2

Dielectrons: chiral symmetry and thermal emission

Relative syst uncertainty from HF decay bkg

- HF decays produce correlated background
- Large for $m_{ee} \gtrsim 1 \,\mathrm{GeV}/c^2$
- Improved rejection in ALICE 3

ALICE 3 mass spectrum

Dielectron v₂

High precision: access $\rho - a_1$ mixing Excellent precision for dilepton v_2 vs p_{T} in different mass ranges \rightarrow time evolution of emission

Conclusion

Heavy-ion collisions allow to study properties of bulk QCD Large azimuthal asymmetry for light and heavy flavours

- The QGP at LHC has a viscosity close to the lower bound
- Charm diffusion and approach to thermalisation

Large energy loss for high-momentum probes

- Radiative and collisions energy loss
- Transport properties in line with lattice QCD and pQCD expectations

Much more to come in Run 3 and beyond

. . . .

- Temperature of the QGP before hadronisation from dielectron emission
- Understanding heavy quark thermalisation
- Impact of hadronisation on main observables

Extra slides

ALICE 3 Vertex Detector

- - thin walls to minimise material
- R&D programme on mechanics, cooling, radiation tolerance

Nuclear states: charm-deuteron

Impact parameter distributions

Invariant mass distribution

Unique sensitivity to undiscovered charm-nuclei: charm-deuteron and higher nuclear states

Hadron formation

- Multi-charm baryons: unique probe of hadron formation
 - Require production of multiple charm quarks
 - Single-scattering contribution very small (unlike e.g. J/ψ)
- Statistical hadronisation model: very large enhancement in AA
 - Charm out of equilibrium: yields scale with g_c^n for *n*-charm states
 - How is thermalisation approached microscopically?

Measure additional states to test physical pictu

Single and double-charm baryons: Λ_c , Ξ_c , Ξ_{cc} , Ω_{cc} Multi-flavour mesons: B_c, D_s, B_{s,...}

Tightly/weakly bound states J/ ψ , $\chi_{c1}(3872)$, T_{cc}^+

Large mass light flavour particles: nuclei

DD* momentum correlations

- Several exotic heavy flavour states identified
- Loosely bound meson molecule or tightly bound tetraquark?
- Study binding potential with final state interactions 'femtoscopic correlations'

ALICE 3 overview | January 28, 2022 | MvL, jkl

DD* momentum correlation

 $D^0 D^{*+}$: nature of T_{cc}^+

 $D^0 \overline{D}^{*0}$: nature of $\chi_{c1}(3872)$

$D^0 D^{*+}$: nature of T_{cc}^+

- Exotic states: $\chi_{c1}(3872), T_{cc}^+, ...$
 - Include double charm states, potentially weakly-bound states • Investigate structure with femtoscopic momentum correlations Understand dissociation and regeneration in QGP

Exotic bound states

Dissociation and regeneration vs multiplicity

 $\chi_{c1}(3872)$ significance (pp)

Azimuthal anisotropy: two mechanisms

Hydrodynamical expansion

Conversion of pressure gradients into momentum space anisotropy

Dominant effect for late formation times: light flavour at low p_T

Parton energy loss

Anisotropy due to energy loss and path length differences

More energy loss along long axis than short axis

 $\Delta E_{med} \sim \alpha_S \hat{q} L^2$

Dominant effect for early formation times: heavy flavour, high p_T probes

Azimuthal anisotropy global fit: input

Experimental input: yields, mean p_T and harmonic flow vs p_T

Explores a large parameter space to investigate reliability/robustness of the modeling

J. E. Bernhard et al, arXiv: 1605.03954

Model: initial anisotropies + medium response

Parton interactions in the medium: Collisional + radiative

'Improved Langevin model':

Drag

(often not used/present in light flavour models)

Transport coefficients:

$$\frac{d}{dt} \left\langle p \right\rangle \equiv -\eta_D \left\langle \frac{1}{2} \frac{d}{dt} \left\langle (\Delta p_T)^2 \right\rangle \\ \frac{d}{dt} \left\langle (\Delta p_z)^2 \right\rangle \equiv$$

Over time: approach thermalisation 'limiting behaviour'

Different formulations exist in literature – use this as an example

Y. Xu et al, PRC 97, 014907

Mass and momentum dependence of transport coefficients

Heavy quark spatial $\langle r^2 \rangle = 6 D_s t$ diffusion coefficient D_s

Mass independent, limit $p \rightarrow 0$

Other key quantities do depend on mass:

Relaxation time
$$\tau_Q = (m_Q/T) D_s$$

Drag coefficient $\gamma = \frac{T}{m_Q D_s}$

⇒ Beauty thermalises more slowly than charm

Beauty vs charm: important handle on understanding phenomenology

Rapp et al, <u>arXiv:1803.03824</u>

Xu, Y and Bass, S er at, PRC 99, 1, 014902

Hadronisation and baryon production particle yields in multiplicity bins

Fraction of strange hadrons increases with multiplicity Large effect for multi-strange Ξ and Ω

Similar enhancement in PbPb has been interpreted as thermalisation; global equilibration of the strangeness yield. Are they related?

Transverse energy map of 1 event

Use p_T balance to measure energy loss i.e. transport of energy outside jet cone

Energy loss: di-jet asymmetry

 $p_{T,1}$ Subleading jet energy fraction $p_{T,2}$

proton-proton collisions

Pb-Pb collisions

Pb—Pb distribution shifted to lower energies: energy loss due to interactions

(relative) strength of effect depends on jet energy: fraction of energy loss decreases with p_{T,jet}

Qualitatively in line with bremsstrahlung expectation

Strong coupling:
$$\frac{dE}{dx} \propto E$$

dE $\frac{-}{dx} \propto \ln(E)$

ALICE 3 Physics motivation cont'd

- Jet quenching
- Electrical conductivity with very low p_T dileptons
- Small collision systems: collectivity, MPIs, rare events
- Ultra-soft photons: Low's theorem
- Resonance production in UPC
- ALP search in $\gamma\gamma$
- ³ He decays **1 b**

ALP search

Ultra-soft photons

