Measuring the width of the heaviest elementary particles at the LHC

Tuesday, 6th May 2014

Introduction

P. Silva

LIP seminar

* adapted from xkcd#1348 ** Degrassi, G. et al arXiv:1205.6497

Introduction

• LHC: finding the Higgs is great, but not enough

- maybe there is something around the 13 TeV corner which did not appear at 8 TeV...
- precision electroweak measurements are needed to understand what's going on

Introduction

• LHC: finding the Higgs is great, but not enough

- maybe there is something around the 13 TeV corner which did not appear at 8 TeV...
- precision electroweak measurements are needed to understand what's going on

P. Silva

5/62

Multiple hadron interactions CMS Average Pileup, pp, 2012, $\sqrt{s} = 8$ TeV 60 <µ> = 21 (pb⁻¹/0.04) 6 05 twiki:LumiPublicResults 50 40 minosity 30 30 Ľ 20 20 Recorded 10 10 8, 10 15 00 5 20 30 25 35 Mean number of interactions per crossing P. Silva LIP seminar

P. Silva

P. Silva

... the theoretical description of high-Q² processes is very good ...

... and the detectors have outstanding performance

CMS detector

13/62

- Matching the excellent performance of the LHC
- Sub-detector efficiencies from 97.1%-99.9% at/or with better than design performance
- Coping successfully with the pileup challenge in all fronts: trigger, DAQ, computing, reconstruction

CMS detector, 2008 JINST 3 S08004

The case for the width of a resonance

- Mass of unstable particles is observed with a spread
 - direct consequence of Heisenberg's principle

$$\Delta E \cdot \Delta t \geq \frac{\hbar}{2}$$

 $\Delta E = \frac{\Gamma}{2} = \frac{\hbar}{2\tau}$

 $\mathbf{P}, m_0 \longrightarrow \mathbf{p}_1, m_1$

→ width () quantifies intrinsic mass resolution : distance at half-maximum = 1 / lifetime

Knowing the **interactions** involved we predict Γ

$$d\Gamma = \frac{(2\pi)^4}{2m_0} |\mathcal{M}|^2 d\Phi_n(P \to \sum_{i=1}^n p_i)$$

Measuring Γ directly tests the (in)completion of a theory ►

P. Silva

Lineshape-based width measurements 15/62

- Hard to measure from mass lineshape: limited by detector resolution
 - **Higgs boson** Γ_{sm} (m=125 GeV)=4.15 MeV
- **Top quark** Γ_{sm} (m=173.3 GeV)=1.35 GeV -0-

Lineshape-based width measurements

- Hard to measure from mass lineshape: limited by detector resolution
 - Higgs boson Γ_{sm} (m=125 GeV)=4.15 MeV
 - From 4I (γγ) mass

- **Top quark** Γ_{sm}(m=173.3 GeV)=1.35 GeV
- From fit to (bqq')

Lineshape-based width measurements

Hard to measure from mass lineshape: limited by detector resolution

- → **Higgs boson** Γ_{sm}(m=125 GeV)=4.15 MeV
- From 4I (γγ) mass: Γ<3.4 (7) GeV @ 95% CL</p>
- Top quark Γ_{sm}(m=173.3 GeV)=1.35 GeV
- From fit to (bqq'): Γ<6.38 GeV @ 95% CL

P. Silva

Rate-based width measurements

- There is no such thing as a promptly produced Higgs, top, Z,W,...
 - what happens between the initial and final state is protected by the Heisenberg principle
- Cross section depends on the propagator and on the couplings of a particle

$$\sigma \propto \int \frac{\mathbf{g_i^2} \cdot \mathbf{g_f^2}}{(s - m_0^2)^2 + \mathbf{\Gamma^2} m^2} ds$$

Rate-based width measurements

- There is no such thing as a promptly produced Higgs, top, Z,W,...
 - what happens between the initial and final state is protected by the Heisenberg principle
- Cross section depends on the propagator and on the couplings of a particle

Rate-based width measurements

- There is no such thing as a promptly produced Higgs, top, Z,W,...
 - what happens between the initial and final state is protected by the Heisenberg principle
- Cross section depends on the propagator and on the couplings of a particle

Prospects for Γ_{H} **at lepton colliders**

- e⁺e⁻ colliders: ZH events can be tagged from the recoil mass ►
 - measure $\sigma(ZH)$ and combine with BR(H \rightarrow ZZ) to determine width

(similar to method described in slide 12)

potentially reach 1% uncertainty at FCC-ee/TLEP

arXiv:1310.8361

Facility		ILC		ILC(LumiUp)	TLEF	9 (4 IP)		CLIC	
\sqrt{s} (GeV)	250	500	1000	250/500/1000	240	350	350	1400	3000
$\int \mathcal{L} dt$ (fb ⁻¹)	250	+500	+1000	$1150 + 1600 + 2500^{\ddagger}$	10000	+2600	500	+1500	+2000
$P(e^-,e^+)$	(-0.8,+0.3)	(-0.8, +0.3)	(-0.8, +0.2)	(same)	(0,0)	(0,0)	(0,0)	(-0.8,0)	(-0.8,0)
Γ_H	12%	5.0%	4.6%	2.5%	1.9%	1.0%	9.2%	8.5%	8.4%

- µ⁺µ⁻ colliders: H threshold scan ►
 - High resolution in c.o.m energy
 - Large s-channel production of H (m_µ/m₂>>1)
 - ~3% uncertainty on the width

Prospects for Γ_t **at the ILC e⁺e⁻ collider**

• Threshold scan can be performed and used to extract different parameters

 $\sigma_{\rm t\bar{t}} = f(\sqrt{s}, m_{\rm t}, \Gamma_{\rm t}, \alpha_{\rm S}, m_{\rm H})$

P. Silva

LIP seminar

171.96 171.98

172

172.02 172.04 top mass (GeV)

Measuring the top quark width at the LHC

Using a sample of tt dilepton events we measure $R=B(t \rightarrow Wb)/\Sigma B(t \rightarrow Wq)$.

The result is combined with a single-top-quark cross section to derive Γ_t .

A lower limit on the CKM matrix element $|V_{tb}| > 0.975$ is also derived, at 95%CL.

The **results** presented are **detailed in arXiv:1404.2292** (sub. to PLB)

Top decays

• The top is the only quark decaying directly through an EWK interaction

Top decays

• The top is the only quark decaying directly through an EWK interaction

- charged currents involving the top are dominated by $|V_{tb}| = 0.999152^{+0.000030}_{-0.000045}$
- $|V_{td}| / |V_{ts}| = 0.211 \pm 0.006$ precisely known
- But...is this all there is to know on how does the top disintegrate?
 - what's the total width of this particle?
 - how does it relate with its mass?
 - how is its production dynamics related with its decay products?
 - can we unambiguously reconstruct a top quark from its decay products?

Measuring the tWb coupling strength

• Counting single top quarks: the signal strength is measures V_{tb} directly

- t-channel is easily accessible at the LHC $\sigma(8 \text{ TeV})=87.1 \text{ pb}$
- $\Rightarrow \text{ given } \sigma(pp \to tj) \propto |V_{\rm tb}|^2 \sigma_{\rm b}^{\rm t-ch} \to \frac{\Delta V_{\rm tb}}{V_{\rm tb}} = \frac{1}{2} \left(\frac{\Delta \sigma^{\rm meas}}{\sigma^{\rm meas}} \oplus \frac{\Delta \sigma^{\rm th}}{\sigma^{\rm th}} \right)$
- → for an experimental uncertainty ~9% and theory uncertainty ~3% (approx. NNLO) $\rightarrow \Delta V_{tb}$ ~4-5%

Measuring the tWb coupling strength

• Counting single top quarks: the signal strength is measures V_{th} directly

- t-channel is easily accessible at the LHC $\sigma(8 \text{ TeV})=87.1 \text{ pb}$
- $\Rightarrow \text{ given } \sigma(pp \to tj) \propto |V_{\rm tb}|^2 \sigma_{\rm b}^{\rm t-ch} \to \frac{\Delta V_{\rm tb}}{V_{\rm tb}} = \frac{1}{2} \left(\frac{\Delta \sigma^{\rm meas}}{\sigma^{\rm meas}} \oplus \frac{\Delta \sigma^{\rm th}}{\sigma^{\rm th}} \right)$
- → for an experimental uncertainty ~9% and theory uncertainty ~3% (approx. NNLO) $\rightarrow \Delta V_{tb}$ ~4-5%

Counting how often the top decays to a bottom quark

→ measure R=B(t → Wb) / B(t → Wq)=
$$|V_{tb}|^2$$

under the assumption of the 3x3 CKM matrix unitarity

- given $R \propto \varepsilon_{\rm b} \rightarrow \frac{\Delta V_{\rm tb}}{V_{\rm tb}} \propto \frac{1}{2} \frac{\Delta \varepsilon_{\rm b}}{\varepsilon_{\rm b}}$
- → for an experimental uncertainty ~2% on b-tagging → ΔV_{tb} ~1%

Both cases are complementary and open different windows for NP contributions

Sample used for the analysis

• We select dilepton events in data

- → Lower branching ratio (≈0.065) but cleaner signature (S/S+B≈70-87%)
- → ≥ 2 isolated prompt leptons with op. sign + ≥ 2 jets + E_{τ}^{miss} >40 GeV and Z veto for ee/µµ channels

Cross section measurement

- Compare the number of events selected in each jet multiplicity bin with expectations
 - let the signal strength $\mu = \sigma / \sigma_{th}$ to float freely
 - include systematic uncertainties (θ_i) as correction factors (distributed as log-normal $\rho(\theta_i)$)

$$\mathcal{L}(\mu,\theta) = \prod_{k} \mathcal{P}\left[N_{k}, \hat{N}_{k}(\mu,\theta_{i})\right] \cdot \prod_{i} \rho(\theta_{i}) \xrightarrow{\text{profile unc.}} \lambda(\mu) = \frac{\mathcal{L}(\mu,\theta)}{\mathcal{L}(\mu,\theta)}$$

6% unc

Result is in agreement with NNLO+NNLL PRL 110 (2013) 252004 25

 $\sigma(t\bar{t}) = 238 \pm 1 \text{ (stat.)} \pm 15 \text{ (syst.) pb}$

- Main uncertainties:
 - experimental: luminosity, selection efficiency
 - theory: QCD scales, ISR/FSR model (ME-PS matching)

Technique is used to derive the purity of the sample in each event category

The jet misassignment problem

- Although we select a high purity sample, **not all jets come from t \rightarrow Wq**
 - ISR/FSR contamination is non-negligible
 - signal jets are often soft in p_{τ} or fail tracker acceptance
- All the events selected can be **interpreted as a sum of three categories**

The jet misassignment problem

- Although we select a high purity sample, **not all jets come from t \rightarrow Wq**
 - ISR/FSR contamination is non-negligible
 - signal jets are often soft in p_{τ} or fail tracker acceptance
- All the events selected can be **interpreted as a sum of three categories**

LIP seminar

Jet misassignment measurement

• We consider the lepton-jet invariant mass spectrum

- pairs with signal jets have an end-point defined by the top quark mass
- misassignments can be modeled from data: randomly rotate lepton direction before pairing with jet
- Fit spectrum with two components to extract the fraction of jets from t
 → Wq

Although measured in data, expectations from simulation match observations → good description of ISR/FSR with Madgraph+Pythia6

How many signal jets are from b's?

- Count the number of b-tagged jets and compare with expectations
- Data in agreement with simulation+data-based backgrounds expectations
 - could use simulation based templates for different top decay possibilities
 - but would be limited by SM-like interpretation and by theory related uncertainties

How many signal jets are from b's?

- Count the number of b-tagged jets and compare with expectations
- **Parametric model** based on: tt purity, fraction of $t \rightarrow Wq$ and b-tag/mistag efficiencies
 - e.g. in an event with 2 jets, both from top probability two observe 2 b-tags

b-tagged jet multiplicity

Measuring $R=B(t\rightarrow Wb)/B(t\rightarrow Wq)$

35/62

CMS, $\sqrt{s} = 8$ TeV, $(L dt = 19.7 \text{ fb}^{-1})$ Event fraction 0 b-tags 0.9 = 1 b-tag 2 b-tags 0.8 The observed b-tagged jet multiplicity is 3 b-tags compared with the probability model ► 0.7 4 b-tags 0.6 0.5 0.4 0.3 Profile the likelihood containing all the ۲ uncertainties on the input parameters: 0.2 0.1 0.2 0.6 0.4 0.8 1.2 $R=B(t\rightarrow Wb)/B(t\rightarrow Wq)$ N_{jets} $\hat{N}_{ ext{ev}}^{\ell\ell,N_{ ext{jets}}}(k), \hat{N}_{ ext{ev}}^{\ell\ell,N_{ ext{jets}}}(k)$ $\mathcal{G}(\theta_i^0, \theta_i, 1)$ $\mathcal{L}(\mathcal{R}, f_{t\bar{t}}, k_{st} f_{correc}, \varepsilon_b, \varepsilon_q, \varepsilon_{qt}, \theta_i) =$ $\ell\ell N_{iets} \ge 2 k = 0$ **Purity of the** $N(t \rightarrow Wq)$ Tagging efficiencies based on quantity to **Uncertainties** sample reconstructed dijet measurements measure

Result

After the fit **we measure**

$\mathcal{R} = 1.014 \pm 0.003$ (stat.) ± 0.032 (syst.)

- uncertainty is dominated by the b-tagging efficiency
- good agreement observed between the exclusive and inclusive categories, all agree with the SM -9-

after imposing the 3x3 CKM unitarity we measure $|V_{tb}| = 1.007 \pm 0.016$ (stat.+syst.)

Result in the current experimental context

From R to the total width

The partial width to Wb is well known at NLO

$$\Gamma(t \to Wb)_{\rm th} = \frac{G_{\rm F}m_{\rm t}^3}{8\pi\sqrt{2}} |V_{\rm tb}|^2 \left(1 - \frac{M_{\rm W}^2}{m_{\rm t}^2}\right)^2 \left(1 + 2\frac{M_{\rm W}^2}{m_{\rm t}^2}\right) \left[1 - \frac{2\alpha_{\rm S}}{3\pi} \left(\frac{2\pi^2}{3} - \frac{5}{2}\right)\right]$$

Using the PDG values and m_r=172.5 GeV

Assuming only CC EWK top decays

$$\rightarrow \Gamma_{t} = \Gamma_{b} / |V_{tb}|^{2} = 1.331 \text{ GeV}$$

Γ, [GeV]

Result

LIP seminar

39/62

 $\Gamma_{\rm t} = 1.36 \pm 0.02$ (stat.) $^{+0.14}_{-0.11}$ (syst.) GeV

I 1% total uncertainty @ the expected ILC-level, supersedes 24% attained by D0

Source	Uncertainty (%)
Experimental uncertainties:	
ε_b	4.3
ε _q	0.3
f _ŧ	0.3
DY	0.2
misidentified lepton	0.1
JER	0.4
JES	0.7
unclustered $E_{\rm T}^{\rm miss}$	<0.1
integrated luminosity	0.5
pileup	0.8
simulation statistics	0.4
fcorrect	0.5
selection efficiency	0.1
Single-top quark t-channel cross section	9.2
Theoretical uncertainties:	
top-quark mass	0.6
top-quark p _T Unpublished	0.4
ME-PS	0.8
$\mu_{\rm R}/\mu_{\rm F}$	0.8
signal generator	0.4
underlying event	0.1
colour reconnection	0.1
hadronisation	0.4
PDF	<0.1
$t \rightarrow Wq$ flavour	0.3
$ V_{\rm td} / V_{\rm ts} $	0.1
relative single-top-quark fraction (tW)	0.10
VV (theoretical cross section)	0.09
extra sources of heavy flavour	0.3
Total uncertainty (%)	10.5

Looking ahead for signs of NP - I

- Given we measure Γ_t to be close to Γ_b there is little room for NP
- Interpretation must however be made carefully given the SM-like hypothesis made
 - follow EFT-like approach (e.g. Degrande et al. <u>arXiv:1302.1101</u>, DIS 2014)

Looking ahead for signs of NP - I

- Given we measure Γ_t to be close to Γ_b there is little room for NP
- Interpretation must however be made carefully given the SM-like hypothesis made
 - follow EFT-like approach (e.g. Degrande et al. arXiv:1302.1101, DIS 2014)

Bounding the Higgs boson width

We constrain the total Higgs boson width, Γ_{H} , using off-shell production and decay to 4l or 2l2v. A fit of the 4l mass or 2l+MET transverse mass, combined with the on-shell measurement of the Higgs boson cross section, leads to an upper limit of Γ_{H} <4.2 Γ_{H}^{SM} @ 95% CL. The results presented are detailed in CMS-PAS-HIG-14-002 (paper in preparation)

Higgs off-shell production and decay

- Although the SM Higgs is expected to be very narrow ~8% production is off-shell
 - mixed effect of production and decay with enhancements at $2m_v$ and $2m_t$ thresholds
 - initially implementation in gg2VV by Kauer and Passarino, JHEP 08 (2012) 16
 - follow-up Caola and Melnikov PRD88 (2013) 054025, Campbell et al arXiv:1311:3589

Higgs off-shell production and decay

- Although the SM Higgs is expected to be very narrow ~8% production is off-shell
 - mixed effect of production and decay with enhancements at $2m_v$ and $2m_t$ thresholds
 - initially noted by Kauer and Passarino, JHEP 08 (2012) 16
 - Follow-up Caola and Melnikov PRD88 (2013) 054025, Campbell et al arXiv:1311:3589

Analysis strategy

• Search for anomalous ZZ production through gluon-gluon fusion at high mass

Signal simulation

- Gluon fusion production generated @ LO with gg2VV or MCFM (m_H=125.6 GeV)
 - Inclusive generation: Higgs, continuum background and interference

NNLO k-factors for gg → VV

- Bonvini et al. PRD88 (2013) 034032, Passarino arXiv:1312.2397
- applied as a function of m_{zz} to signal and background
- **VBF** production is generated with Phantom or Madgraph
 - Expect to yield ~10% in the high mass regime
 - inclusive generation, as in gg case

Golden channel: $H \rightarrow ZZ \rightarrow 4I$

- Golden-channel for Higgs discovery and properties measurement (arXiv:1312.5353)
- Main background is irreducible from $qq \rightarrow ZZ$; residual Z+X extrapolated from data
- Access to on-shell and off-shell production
- Analyze m₄₁ or kinematic discriminant based on matrix-element probabilities

Discriminators and event yields for 41

High-mass specialist: $H \rightarrow ZZ \rightarrow 2I2v$

- BR(2l2v) ~ 6x BR(4l) \rightarrow crucial when σ is low
- Main backgrounds:
 - Instrumental: Z+jets (from photon+jets)
 - Non-resonant: WW, top (from eµ control)
 - Irreducible: ZZ, WZ
- Tight cuts: can't access Higgs on-shell

High-mass specialist: $H \rightarrow ZZ \rightarrow 2I2v$ 50/62

- BR(2l2v) ~ 6x BR(4l) \rightarrow crucial when σ is low
- Main backgrounds:
 - Instrumental: Z+jets (from photon+jets)
 - Non-resonant: WW, top (from eµ control)
 - Irreducible: ZZ, WZ
- Tight cuts: can't access Higgs on-shell
- Missing transverse energy (E_{t}^{miss})

$$m_{\rm T}^2 = \left[\sqrt{p_{{\rm T},\ell\ell}^2 + m_{\ell\ell}^2} + \sqrt{E_{\rm T}^{\rm miss}^2 + m_{\ell\ell}^2}\right]^2 - \left[\vec{p}_{{\rm T},\ell\ell} + \vec{E}_{{\rm T}}^{\rm miss}\right]^2$$

Discriminators and event yields for 212v

- Categorize events according to jets
 - VBF category has priority

 M_{μ} >500 GeV, $|\Delta \eta|$ >4, central jet veto

• If not VBF count jets with $p_T > 30 \text{ GeV}$

Event yields in a signal-enriched region

- $E_t^{miss} > 100 \text{ GeV}$ and $m_T > 350 \text{ GeV}$

		ee	μμ
	gg + VBF (signal, $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}=1$)	2.3 ± 0.5	2.7±0.6
	gg + VBF (background)	5.4 ± 1.2	6.5 ± 1.4
(a)	gg + VBF (total, $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}=1$)	4.8 ± 1.1	5.7±1.3
	gg + VBF (total, $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM} = 10$)	19.2 ± 5.5	22.6±6.7
(b)	$q\bar{q} \rightarrow ZZ$	25.0 ± 2.1	29.4 ± 2.5
	WZ	11.6 ± 1.2	13.5 ± 1.4
	tī/tW/WW	3.3 ± 1.1	4.2 ± 1.4
	Z + jets	1.5±0.9	2.4±1.4
(a+b)	Total expected ($\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}=1$)	46.2 ± 3.0	55.3±3.7
	Observed	39	52

• Theory uncertainties

• $gg \rightarrow ZZ$

QCD scales varied by 2 and $\frac{1}{2}$ with corresponding NNLO k-factor variations PDF variations by using CT10, MSTW2008 and NNPDF2.1 (PDF4LHC prescription) Additional 10% on continuum gg \rightarrow ZZ background (limited knowledge at higher orders) Jet binning uncertainties computed with MCFM: typically uncorrelate gg \rightarrow ZZ in different bins Approximate simulation of VBF shapes (4I - specific)

→ $qq \rightarrow ZZ/WZ$

QCD scales and PDF uncertainties following similar prescription as above

• Experimental uncertainties

- Lepton trigger, id, isolation efficiencies
- Jet energy scale/resolution, unclustered E_T^{tmiss} , b-tagging efficiency (2l2v specific)
- Integrated luminosity
- Data-based background estimations

Uncertainty effects are taken into account to both rate and shape.

Results: 4I analysis

A 2D fit to m₄₁ and D_{gg}

• Observed (expected) limit: r < 6.6 (11.5)

equivalent to Γ < 27.4 MeV at 95% CL

Best fit value: r = 0.5^{+2.3}_{-0.5}

equivalent to $\Gamma = 2.0^{+9.6}_{-2.0}$ MeV

Results: 2l2v analysis

• A ID fit to m_{T} (0,21 jets) and E_{T}^{miss} (VBF)

54/62

- Cross-check in different categories
 - Fit dominated by non-VBF categories
 - → ee : r < 6.9 (14.3 expected)</p>
 - μμ : r < 14.0 (13.7 expected)</p>
 - Counting analysis: r < 12.4 (16.4 expected)

- Observed (expected) limit: r < 6.4 (10.7)
 equivalent to Γ < 26.6 MeV at 95% CL
- Best fit value: r = 0.2^{+2.2}

equivalent to $\Gamma = 0.8^{+9.1}$ MeV

Results: combined

- Supersedes direct measurements from 4I and γγ
- Observed limit << Expected limit
 - → p-value~0.02 ...
 - Consistent between independent analysis/final states

55/62

- Feldman-Cousins-based results consistent
- hitting theoretical prediction accuracy already?

	4ℓ	$2\ell 2\nu$	Combined
Expected 95% CL limit, r	11.5	10.7	8.5
Observed 95% CL limit, r	6.6	6.4	4.2
Observed 95% CL limit, $\Gamma_{\rm H}({ m MeV})$	27.4	26.6	17.4
Observed best fit, r	$0.5 \stackrel{+2.3}{_{-0.5}}$	$0.2 \stackrel{+2.2}{_{-0.2}}$	$0.3 {}^{+1.5}_{-0.3}$
Observed best fit, $\Gamma_{\rm H}({ m MeV})$	$2.0 \stackrel{+9.6}{-2.0}$	$0.8 \stackrel{+9.1}{_{-0.8}}$	$1.4 {+6.1 \atop -1.4}$

The LHC can effectively grasp Γ_{H} !

Looking ahead for signs of NP - II

- Although the result is outstanding we are still far away from testing NP from Γ_{μ}
 - will be useful in view of a global fit to Higgs properties
 - direct limits on BR(H \rightarrow invisible) are ~30-40% better at this stage
- Run II will provide enough statistics to improve considerably → needs theory follow-up

Summary

58/62

• LHC: finding the Higgs is great, but not enough

- maybe there is something around the 13 TeV corner which did not appear at 8 TeV...
- precision electroweak measurements are needed to understand what's going on

• Case for width measurements

- bound NP effects or test SM completeness from total width
- very hard to measure directly from the mass lineshape : use rate-based techniques

• Two different approaches for Γ_t and Γ_H presented today

- top quark: uncertainty at the 11% level \rightarrow little room left for NP, but possibility to improve
- → higgs boson: getting close to the SM → still a lot of room for NP, how near will we get with 13 TeV?
- in both cases: these are new results and world's best

Backup

Imposing the $R \leq I$ physical boundary

- The fits for R, $|V_{tb}|$ or Γ_t are unconstrained
 - Physical boundary imposed a posteriori using a Feldman-Cousins procedure PRD57:3873-3889,1998
 - Throw pseudo-experiments including systematic uncertainties and imposing physical boundary
 - Obtain acceptance regions for the test statistics at different confidence levels
 - Compare with data to derive the lower endpoint of the interval

Indirect Γ_t measurement from D0

- **D0** has performed an indirect measurement of Γ_r (PRL 106 (2011) 022001/PRD85 (2012) 091104)
- The total width can be indirectly inferred combining

single top t-channel cross section

yields access to the Wb partial width $\Gamma(t \to Wb) = \sigma(t - ch.) \frac{\Gamma(t \to Wb)_{th}}{\sigma(t - ch.)_{th}}$

measurement of $R=B(t \rightarrow Wb)/B(t \rightarrow Wq)$

yields access to the Wb branching ratio

$$B(t \to Wb) = \frac{\Gamma(t \to Wb)}{\Gamma_{t}}$$

$$\Gamma_{t} = \frac{\sigma(t - ch.)}{B(t \to Wb)} \frac{\Gamma(t \to Wb)_{th}}{\sigma(t - ch.)_{th}}$$

- Combine the two measurements to extract Γ_t
 - Derive posterior probabilities from σ(t-channel) and R
 - Γ_t>1.37 GeV at 95% CL (JES/JER, luminosity, W+jets, signal generator and ε_h dominate unc.)

Projections: pre-HIG-14-002

62/62

LHC run I

Method	Measured quantity	Γ_H [MeV]	$\Gamma_H/\Gamma_H^{ m SM}$
CMS-PAS-HIG-13-016	Width \times resolution	< 6900	< 1600
1305.3854 (Dixon-Li)	Mass shift in $\gamma\gamma, \Delta m_H \sim 1 { m GeV}$	< 800	< 200
1312.1628 (CEW)	Ratio WW, $m_T > 130, 300 \text{ GeV}$	< 500, 180	< 125, 45
1311.3589 (CEW)	Ratio ZZ, $m_{4\ell} > 130,300$ GeV, MEM	< 170, 100, 60	< 43, 25, 15

LHC 3ab⁻¹

Method	Measured quantity	$\Gamma_H [{ m MeV}]$	$\Gamma_H/\Gamma_H^{ m SM}$
Snowmass estimate 3 ab^{-1}	Width \times resolution	< 200	< 50
1305.3854 (Dixon-Li) 3 ab^{-1}	Mass shift in $\gamma\gamma, \Delta m_H \sim 100 { m MeV}$	< 60	< 15
1307.4935 (CM) 3 ab^{-1}	Ratio ZZ, $m_{4\ell} > 130,300~{\rm GeV}$	< 40, 20	< 10,5