NPStrong group: 5 permanent members + several PhD and master students

Hadrons: strongly interacting particles - Baryons (p, n, Δ , Λ , ...) and Mesons (π , K, J/ ψ , ...)

- Understand hadrons through the fundamental theory of the strong interaction QCD
- QCD is the quantum field theory of quarks and gluons
- Hadrons live in the strong coupling regime everything is complicated!

Quarks and gluons are confined inside hadrons

How exactly does Confinement work?

In QCD even the zero-body problem is complicated

QCD vacuum action density

Mesons: Bound states of quarks and antiquarks

Baryons: Bound states of three quarks

- Which hadrons exist?
- What are their masses?
- What is their structure?
- How do they form?
- How do they decay?
- How do they interact with other particles?

Dynamical mass generation in hadrons:

Proton: uud mass 938 MeV But quarks u, d mass only 3-5 MeV

Where does the missing mass come from?

Conventional hadrons

Exotic hadrons

What is their internal structure?

Example: $c\bar{c}q\bar{q}$

