

New neutrino mass constraints from the KATRIN experiment

Björn Lehnert

for the KATRIN Collaboration

LIP Seminar virtual, March 24th 2022

Neutrinos (ν)

- Most abundant matter particle in the Universe: 336 cm⁻³
- Influence physics on smallest and largest scales
- Interact only via weak force difficult to study

electron anti-neutrino

Methods of neutrino physics: cosmology, particle physics, nuclear physics

Length scale:

Neutrinos in the Standard Model

Mass scale:

• 3 neutrino flavors from Z decay width

Much lighter than other fermions

Neutrino Parameters

Neutrino oscillation: Mixing of Flavor and mass eigenstates

 $|\nu_{\text{flavor}} > = \sum_{i} U^*_{\alpha i} \cdot |\nu_{\text{mass}} >$

PMNS (Pontecorvo-Maki-Nakagawa-Sakata):

$$U_{\alpha i} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c\Theta_{23} & s\Theta_{23} \\ 0 & -s\Theta_{23} & c\Theta_{23} \end{pmatrix} \begin{pmatrix} c\Theta_{13} & 0 & s\Theta_{13} \cdot e^{-i\delta} \\ 0 & 1 & 0 \\ -s\Theta_{13} \cdot e^{-i\delta} & 0 & c\Theta_{13} \end{pmatrix} \begin{pmatrix} c\Theta_{12} & s\Theta_{12} & 0 \\ -s\Theta_{12} & c\Theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-i\alpha/2} & 0 \\ 0 & 0 & e^{-i\beta/2} \end{pmatrix}$$

- Precision measurements with oscillation: $\Theta_{12}, \Theta_{13}, \Theta_{23}, \Delta m_{12}^2, \Delta m_{23}^2$
- Upcoming oscillation measurements (subdominant matter effects): CP phase $e^{i\delta}$, ordering $sign(\Delta m_{23}^2)$
- Not accessible with oscillations: absolute mass scale, Dirac ($\nu \neq \bar{\nu}$) or Majorana ($\nu = \bar{\nu}, \alpha, \beta$)

Can be measured in neutrino mass and double beta decay experiments

Different Neutrino Mass Observables

Cosmological m_{Σ} Signatures

Matter distributions influenced by m_{Σ}

Heavy neutrinos wash out gravitational wells and disfavor small structures

Cosmic microwave background (CMB) influenced by m_{Σ}

CMB anisotropies / lensing

Current limits: [arXiv:1807.06209v2]

- m_{Σ} < 120 meV (95% CL) Planck + BAO
- tightest bound on neutrino mass

Future limits:

- $m_{\Sigma} \sim 20 \text{ meV}$ (CMB-S4 + BAO)
- mass ordering with 2-4 σ

```
(assuming \Lambda CDM)
```

Neutrinoless Double Beta Decay

New KATRIN results, Bjoern Lehnert, LIP Seminar (03/24/22)

7

Beta Decay Measurements

Observable:
$$m_{\beta}^2 = \sum_i m_i^2 |U_{ei}|^2$$

• Appears in β -spectrum:

$$\frac{d\Gamma}{dE_{e}}(m_{v_{i}}) = \frac{C \cdot p_{e}E_{e} \cdot \sqrt{(E_{e} - E_{0})^{2} - (m_{v_{i}}^{2})(E_{e} - E_{0}) \cdot F(E_{e}, Z)}}{\uparrow}$$
normalization
$$A = \frac{C \cdot P_{e}E_{e} \cdot \sqrt{(E_{e} - E_{0})^{2} - (m_{v_{i}}^{2})(E_{e} - E_{0}) \cdot F(E_{e}, Z)}}{\uparrow}$$
Relativistic Fermi function

No model dependence (only kinematics)

Experimental Challenges:

- High resolution
- Low background
- Convenient isotope: half-life, Q-value ³H (12 yr, 18.6 keV), ¹⁶³Ho (4600 yr, 2.8 keV)

Other kinematic limits [pdg]: • SN1987: $mv_e < 5.8 \text{ eV}$ • π -decay: $mv_{\mu} < 190 \text{ keV}$ • τ -decay: $mv_{\tau} < 18.2 \text{ MeV}$

Global Picture pre-Katrin (2019)

(assuming no sterile neutrinos)

[from Eligio Lisi, TAUP19]

- Lower limit on m_β at 8 50 meV
- m_{Σ} constrains parameter space better than m_{β}
- $m_{\beta\beta}$ constrains parameter space better than m_{β}
- BUT: m_β is the only model independent measurement

History of Neutrino Mass Measurements

Mainz Neutrino Mass Experiment

MAC-E filter, solid state T₂ source: $m_v < 2.3 \text{ eV}$

Los Alamos Tritium Experiment Gaseous T₂ source: $m_{\nu} < 9.3 \text{ eV}$

Year

Troitsk Neutrino Mass Experiment

MAC-E filter, gaseous T₂ source:

KATRIN - KArlsruhe TRItium Neutrino Experiment

130 scientists in 20 institutions from 5 countries

Funding and support from: Helmholtz Association (HGF), Ministry for Education and Research BMBF (05A17PM3, 05A17PX3, 05A17VK2, and 05A17WO3), Helmholtz Alliance for Astroparticle Physics (HAP), and Helmholtz Young Investigator Group (VH-NG-1055) in Germany; Ministry of Education, Youth and Sport (CANAM-LM2011019), cooperation with the JINR Dubna (3+3 grants) 2017–2019 in the Czech Republic; and the Department of Energy through grants DE-FG02-97ER41020, DE-FG02-94ER40818, DE-SC0004036, DE-FG02-97ER41033, DE-FG02-97ER41041, DE-AC02-05CH11231, and DE-SC0011091 in the United States.

The KATRIN Beamline

70 m beam line

New KATRIN results, Bjoern Lehnert, LIP Seminar (03/24/22) 12

The KATRIN Beamline: Source

Tritium:

- $T_{1/2} = 12.3 \text{ yr}$
- Q-value 18.6 keV $(m_v < 0.0002 \text{ keV})$
- Super allowed beta decay

Molecular tritium:

- Complicated final state distribution
- Measuring isotopologues with Laser Raman spectroscopy

The KATRIN Beamline: Source

Windowless gaseous tritium source:

- Up to 40 g tritium throughput per day
- 10¹⁷ molecules / cm²
- Highest T throughput worldwide
 - (20 kg world inventory)
- Continuous circulation to achieve constant high tritium purity >95%

T₂ throughput similar to ITER fusion reactor

The KATRIN Beamline: Transport Section

The KATRIN Beamline: Main Spectrometer

• Electrostatic filter applied in analyzing plane

The KATRIN Beamline: Main Spectrometer

2006: first 8000 km. too big for land transport

- 23 m length, 10 m diameter
- Turbo molecular pumps create world largest ultra high vacuum (1250 m³ at 10⁻¹¹ mbar)

First precision measurements

The KATRIN Beamline: Main Spectrometer

Inner electrode system for E-field shaping:

- Fine-tuning of electric field
- Background rejection of charged particles from wall

Outer air-coil system for B-field shaping:

- Fine-tuning of 2 mT B-field in analyzing plane
- Compensation of earth magnetic field

The KATRIN Beamline: Focal Plane Detector

Si detector energy spectrum

Focal plane detector:

- 148 pixel Si-pin detector
- Counting electrons which pass main spectrometer

The KATRIN Beamline: Electron Gun

Electron gun:

- Mapping of analyzing plane with angular selected monoenergetic e⁻
- Understanding source systematics
 - Electron scattering
 - In-situ monitoring of column density

Energy Loss Function and Response

have slightly different response functions

Response function at different source densities

- \approx 70% of electron scatter in source and loose energy
- Literature knowledge of energy loss function not precise enough for final sensitivity
- Electron loss function measured in-situ with electron gun and novel ToF technique Eur. Phys. J. C (2021) 81: 579

Plasma Effects

Tritium source is a plasma:

- 10¹¹ Bq ionizes T_2 (\approx 30 per decay)
- 30 K ion temperature
- keV e⁻ temperature
- magnetic field, pumping
- coupled to gold plated rear wall

Consequences:

- Plasma distribution and instabilities: random energy smearing
- Location dependent potential: un-scattered e⁻ see different potential than scattered e⁻

Solution:

• Two systematic parameters (shift and smear)

Effect on response function

- Calibration with ^{83m}Kr (operation at higher temperature)
- Pixel-ring segmented analysis (radial)

New KATRIN results, Bjoern Lehnert, LIP Seminar (03/24/22) 22

Measurement Concept

Integrated spectrum

 Run: complete scan of all HV points

Illustration only

- 4 fit parameters to describe spectrum
- Background is flat

Residuals

- Most sensitive region around endpoint
- With higher background the sensitive region moves lower in energy
- Statistical fluctuations can result in "negative m²"

Measuring time distribution

- Choose HV points and statistics in each point
- Optimize for sensitivity e.g. constrain background, normalization

Backgrounds

Main expected electron source:

- e⁻ from muon interaction in vessel (above ground)
- Effectively mitigated by inner electrode system

Signal:

• e^{-} have $E \approx 0$ keV in analyzing plane

Background:

- All low energy e⁻ in main spectrometer volume can mimic signal
- Background e⁻ are detected independent of qU: background flat in integral spectrum

Initially observed background 50x higher than expected!

Backgrounds

- MAC-E filter can store fast ethrough "magnetic bottle" effect
- Stored e⁻ ionize residual gas creating low e⁻ secondary electrons

1. 219 Rn (T_{1/2} = 4s) from getter material in pumps

- Decays in spectrometer creating fast e- which are stored
- · Creates time varying background rate
- Largest systematic

2. Rydberg atoms from vessel walls

- ²¹⁰Pb / ²¹⁰Po decays spatter out atoms in highly excited Rydberg states
- Ionize in main volume creating radial dependent background

Change of measurement and analysis strategy largely mitigates impact on sensitivity

Fit Model

Current Datasets

1st results: PRL 123, 221802 (2019)

2nd results: Nature Phys. 18, 160 (2022)

- 2.5 h per scans
- 27 HV set-points
- 34 mV HV reproducibility
- Optimized for sensitivity
 - ROI for m_{β^2}
 - Background constraint

Blinding Scheme

Three independent analysis teams

- 1. Develop individual analysis on
- MC data (with all slow control information)
- Single data runs (not enough statistics to be sensitive to neutrino mass)
- 2. Model blinding:
- · Cross validate analysis on full data set with "blinded model"

3. Unblinding:

Smear FSD with hidden random value to blind model for 2. validation step

Results KNM1

New KATRIN results, Bjoern Lehnert, LIP Seminar (03/24/22)

29

Results KNM2

Best fit value:

$$m_{\beta}^2 = 0.26^{+0.34}_{-0.34} \text{ eV}^2$$

(0.8 sigma fluctuation)

Limit setting:

Uncertainty budget: • Total: 0.34 eV²

- Statistics: 0.29 eV²
- Systematic: 0.18 eV²

Cross check of Q-value:

	KNM1 [eV]	KNM2 [eV]
endpoint	18573.7 ± 0.1	18573.69 ± 0.03
Q-value	18575.2 ± 0.5	18575.2 ± 0.6

literature Q-value = $18575.72 \pm 0.07 \text{ eV}$ good agreement illustrating stability of energy scale

Results Combined KNM1 + KNM2

Nature Physics 18, 160 (2022)

Bayesian posteriors (KNM1 posterior as KNM2 prior):

3 months KATRIN data better than Mainz, Troitsk

- Statistics x6, systematics x12
- First sub-eV neutrino mass sensitivity in lab
- · Multiple independent blind analyses

Global Picture 2022

(assuming no sterile neutrinos)

[from Eligio Lisi, TAUP19]

- Lower limit on m_β at 8 50 meV
- m_{Σ} constrains parameter space better than m_{β}
- $m_{\beta\beta}$ constrains parameter space better than m_{β}
- BUT: m_β is the only model independent measurement

Future Datasets

Future Datasets

Shifted analyzing plane (SAP):

• Move maximum of potential from center of spectrometer towards the detector side

x2 background reduction

Future Systematics and Outlook for KATRIN

- Sensitivity 200 meV > 20 meV
- σ (statistic) != σ (systematic)
- Improve
 - statistics (source strength)
 - resolution (B-fields)
 - systematics (finals state distribution)

- Sensitivity 200 meV > 20 meV
- σ (statistic) != σ (systematic)
- Improve
 - statistics (source strength)
 - resolution (B-fields)
 - systematics (finals state distribution)

- statistics (x100 larger)
 - source density at maximum (scatters)
 - increase source radius by x10
 - spectrometer radius scales by x10

Sensitivity 200 meV > 20 meV

- σ (statistic) != σ (systematic)
- Improve
 - statistics (source strength)
 - resolution (B-fields)
 - systematics (finals state distribution)

- statistics (x100 larger)
 - source density at maximum (scatters)
 - increase source radius by x10
 - spectrometer radius scales by x10

[S. Enomoto DBD2018]

[S. Enomoto DBD2018]

- Sensitivity 200 meV > 20 meV
- σ (statistic) != σ (systematic)
- Improve
 - statistics (source strength)
 - resolution (B-fields)
 - systematics (finals state distribution)

- statistics (x100 larger)
 - source density at maximum (scatters)
 - increase source radius by x10
 - spectrometer radius scales by x10
- Measurement approach at feasibility limit

Statistics - Increase source density:

1. Extract electron energy by measuring cyclotron radiation (e⁻ remains inside source)

2. Cryogenic bolometers (source = detector)

Resolution:

- 1. Frequency measurement
- 2. Cryogenic bolometers with lower Q-value isotope ¹⁶³Ho (2.8 keV)

Final State Systematics:

- 1. Better theoretical calculations
- 2. Use atomic tritium
- 3. Use calorimeter measuring total energy

Frequency measurement with atomic tritium

(Project 8)

Conclusion

- Neutrino mass measured in three different observables
 - KATRIN measures the neutrino mass with tritium beta decays

• Latest KATRIN results: (1st and 2nd datasets combined) Nature Phys. 18, 160 (2022)

$$m_{\beta}^2 = 0.1 \pm 0.3 \text{ eV}^2$$
 $m_{\beta} < 0.8 \text{ eV} (90\% \text{ CL})$

- Still strongly dominated by statistics
- Future measurements:
 - 7th measurement campaign started (combined release 3,4,5 expect late 2022)
 - Improvements on background reduction established
 - Full KATRIN sensitivity (1000 d): 0.2 eV (90% CL) or 0.35 eV (3 σ)

Thank you for the invitation!

