Flavour Physics

Ivo de Medeiros Varzielas

Instituto Superior Técnico

Mini-School Oeiras, 2022/05/11

The Flavour Problem

2 Flavour Beyond the Standard Model

• The Flavour Solution (?)

Conclusion o

The Standard Model

Gauge group: $SU(3)_C \times SU(2)_L \times U(1)_Y$

Chiral spin 1/2 fermions (left and right) Quarks: colour triplets of $SU(3)_C$ Left fermions are doublets of $SU(2)_L$ Spin 0 scalar, doublet of $SU(2)_L$

The Standard Model (1 generation)

```
Gauge group: SU(3)_C \times SU(2)_L \times U(1)_Y
```

```
Quarks (Q, u_R, d_R): colour triplets of SU(3)_C
LH fields (Q and L): doublets of SU(2)_L
e_R just U(1)_Y
(\nuSM: add \nu_R, complete singlet)
```

Scalar *H* also doublet of $SU(2)_L$ $\langle H \rangle$ breaks $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$

Mass terms: $m_f F_{\alpha} f_R$ not invariant under $SU(2)_L$

But
$$y_f(\epsilon^{\alpha\beta}H_{\alpha}F_{\beta})f_R$$
 is...
 $y_f\langle H\rangle Ff_R \to m_f Ff_R$ with $m_f = y_f\langle H\rangle$

Conclusion o

The Standard Model summary

Ivo de Medeiros Varzielas

Flavour

The Standard Model is very successful but...

- Neutrinos have masses (*v*SM)
- Dark matter (no viable explanation)
- Matter / antimatter asymmetry (no viable explanation)
- Hierarchy problem (fine-tuning between parameters)
- Strong CP problem (fine-tuning between parameters)
- Gauge couplings (additional free parameters) GUT?
- Flavour problem (many additional free parameters) FS?

BSM solutions involve additional fields and symmetries

The Standard Model flavour problem: masses

3 fermion generations? Masses span orders of magnitude?

Conclusion o

The Standard Model flavour problem: mixing

3 generations of quarks, small mixing

3 generations of leptons, large and peculiar mixing

(mixing between weak and mass eigenstates)

Ivo de Medeiros Varzielas Flavour

Conclusion o

Summary of data: quark mixing

Wolfenstein parametrisation

$$V_{CKM} \simeq \left(egin{array}{cc} 1 & \lambda & \lambda^3 \ -\lambda & 1 & \lambda^2 \ \lambda^3 & -\lambda^2 & 1 \end{array}
ight)$$

 $\lambda \simeq$ 0.23 (Sine of the Cabibbo angle)

Conclusion o

Summary of data: lepton mixing

Beyond the Standard Model with Family Symmetry

Without $y_f HFf_R$, $\mathcal{L}_{\nu SM}$ has accidental symmetry $SU(3)^6$

- FS: upgrade subgroup of $SU(3)^6$ to actual symmetry of $\mathcal L$
 - Generations charged differently under FS
 - Yukawa couplings no longer invariant
 - FS must be broken somehow...

Conclusion o

Abelian example: U(1) FS + single familon

Respective mass matrix

$$M_d \sim m_b \begin{pmatrix} \epsilon^4 & \epsilon^3 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & \epsilon \\ \epsilon^2 & \epsilon & 1 \end{pmatrix}$$

 $\frac{\langle \phi \rangle}{M_X} = \epsilon$ Each entry has a y_{ij} parameter!

Non-Abelian?

3 reasons

- 3 generations explained naturally
- ν SM: FS \subset *SU*(3)⁶; *SO*(10) GUT: FS \subset *SU*(3)
- Lepton mixing strongly suggests non-Abelian FS

Flavour Beyond the Standard Model

Conclusion o

Discrete?

2 generation example

- $V = -m^2(\varphi^i \varphi_i^{\dagger}) + \lambda(\varphi^i \varphi_i^{\dagger})(\varphi^j \varphi_j^{\dagger})$ continuous vaccua $\pm d(\varphi^i \varphi_i^{\dagger} \varphi^i \varphi_i^{\dagger})$ discrete vaccua, special directions
- Extrema of $|\varphi_1|^4 + |\varphi_2|^4$ for fixed magnitude v: Positive: $\propto (1, 1)/\sqrt{2} \rightarrow V \sim +2v^4/4$ Negative: $\propto (0, 1) \rightarrow V \sim -v^4$

Summary FS

Interlude

- Discrete symmetries have some interesting advantages
- Magnitudes: Abelian; predictions: non-Abelian
- Very natural extension beyond the SM