XLZD: Towards a Global Rare Event Observatory

Alexandre Lindote, for the LIP Dark Matter group

XLZD

- A consortium formed by the LZ, XENON and DARWIN collaborations
 - All use detectors based on 2-phase xenon TPC technology
 - LZ and XENON lead the direct dark matter search for masses above $\sim\!10~\text{GeV}$
 - DARWIN has been studying the design and science reach of a 50 tonne detector
- Present a united front immediately, to propose a large 2-phase xenon TPC project, with up to 100 tonnes of active mass
- Work towards a formal collaboration, to be formed in the next few months

XLZD

- MoU towards a new collaboration signed in 2021
- Whitepaper signed by 600+ scientists from 150 institutions in 28 countries (2203.02309)
- Various working groups already active, with mixed teams
- First in-person meeting in Karlsruhe (Germany) last week
 - Discussions on the design, installation location, ongoing and future R&D

Ultimate goal

 Explore the remaining WIMP parameter space above the neutrino "fog"

Ultimate goal

 Explore the remaining WIMP parameter space above the neutrino "fog"

Not as close as you may think!

LZ: 15.3 t×y 5.6 tonnes 1000 days

Need ~1000 t×y

Detector design

- Final detector size still under discussion, driven mostly by $^{136}\text{Xe}~0\nu2\beta$ sensitivity
 - Likely 60 80 tonnes active (75 100 t total)
- Typical TPC arrangement
 - Large active region of liquid xenon defined by electrode grids
 - Xenon self-shielding guarantees negligible external backgrounds for WIMP search
 - Two light sensor arrays in the top and bottom
 - Possibility to use SiPMs on the top array for improved position resolution (ongoing R&D)

60 t active (75 t total), 3 m Ø, 3 m tall

Installation location

136Xe $0v2\beta$

- A detector with 60 tonnes is enough for WIMP search
- Going for 80 100 tonnes can make it extremely competitive for $0v2\beta$ (even with no ¹³⁶Xe enrichment)
- Can exclude the inverted hierarchy (IH) scenario for the neutrino masses

10 yr exposure, installation at SURF

100 tonne active mass, installation at SURF

R&D

- Using SiPMs in the top array can significantly improve the position resolution
 - \rightarrow boost $0v2\beta$ sensitivity
 - Reduce the background by excluding multiple scatters of high energy gammas
 - Possibility to reconstruct the tracks of the two electrons
- Doping the xenon with H₂ or D₂ to reduce electron diffusion
- Collaboration with UK institutions (ICL, RAL, UCL, etc.)
- Prototype chamber under construction
- Preliminary simulations show that a resolution of 120 µm is possible (see poster by <u>Fátima Alcaso</u> for more details)

Thank you!

