

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Neutron Detectors

Jornadas LIP, Coimbra, 9 July 2022

Team

Alberto Blanco, Andrey Morozov, **Luís Margato**, Paulo Fonte, Inês Serra (UG student)

Collaborations

Local: RPC and NUC-RIA LIP groups

International: Neutron detector Groups from world-leading neutron facilities (ESS, TUM-FRMII and ISIS)

Supported by: DL and MW LIP infrastructures

Forschungs-Neutronenquelle Heinz Maier-Leibnitz

CERN/FIS-INS/0009/2019 | EXPL/FIS-NUC/0538/2021

What are neutron detectors used for

- Neutron scattering sciences, e.g., for:
 - New Materials Development
 - Life Sciences
 - o Environment and Climate
- Neutron imaging and tomography, e.g., for :
 - Non-destructive testing for Aerospace Industry
 - Cultural Heritage
- Fundamental neutron physics, e.g., to search for the neutron electric dipole moment
- Homeland security, e.g., for portal monitors

More than **5.000 researchers** are using over **32.000 instrument days per year** at the world leading European facilities [1].

[1] Chapman, S., McGreevy, R. & Consortium, L. The LENS Initiative: Strengthening European Neutron Science and Technology. Neutron News 32, 24–27 (2021).

Neutrons to probe magnetism - To develop High-Tc superconductors for more efficient high speed trains, power transmission and compact accelerators.

https://nanomaglux.wordpress.com/

Neutrons (neutral particles) are highly penetrating: Inspection of engines and components for aviation; Solve history mysteries.

doi:10.1002/ange.201713043

Neutrons are sensitive to light elements and isotopes enabling to spot positions of H in proteins – Develop new drugs, e.g., for anticancer therapies

Materials for Hydrogen Storage for a cleaner environment.

https://www.isis.stfc.ac.uk/Pages/Science.aspx

What are neutron detectors used for

Neutron Detection – Basic Principles

Neutron is "neutral" - Detection needs a Nuclear Reaction to convert neutrons into charge particles

□ Slow neutrons (En < 0,5 eV) \rightarrow Fission or Capture reactions (n, γ) (n, p), (n, α), ...

Only a few isotopes have an adequate capture cross section and Q values suitable for thermal neutron detectors.

Solid

- Scintillators and Semiconductors typically doped with ⁶Li, ¹⁰B or ¹⁵⁷Gd
- Neutron converter layers typically enriched with ⁶Li, ¹⁰B, ¹⁵⁷Gd or ²³⁵U

Gas

- Proportional counters filled with gas mixtures containing ¹⁰BF₃ or ³He
- MSGCs filled with ³He/ CF₄

\Box Fast neutrons \rightarrow Elastic scattering (n, n) - Recoil nuclei

Solid: typically layers of materials rich in ¹H

Gas: typically proportional counters filled with gas mixtures with ⁴He

Neutron Detector's

General requirements on neutron detectors for modern instruments

- High (> 50 %) detection efficiency
- Spatial resolution down to 100 μm
- Counting rate from Hz to MHz
- "Blind" to gamma rays (1e-6 sensitivity)
- Sensitive areas from 10 cm² to 30 m²
- Affordable cost

Note: Neutron detectors have to cover a wide range of application. Design and required parameters have to be optimized for each instrument.

- Must be "free" of ³He
 - ³He shortage
 - Ongoing construction of new large scale neutron facilities (ESS); new ones are being planned
 - Upgrades of detectors at world-leading neutron facilities

Pressing need world-wide for alternative neutron detection technologies to ³He continues

Replacement solutions developed to date meet some requirements but fail on other critical ones

RPCs + ¹⁰B₄C - Novel neutron detection technology

RPC configuration

Single Gap hybrid RPC

Double Gap hybrid RPC

Signal pick-up strips : X and Y

Signal pick-up strips : X and Y

L. Margato , Jornadas LIP 2022, 8-9 Jully, Coimbra, Portugal

Detector Architectures

Multilayer

Performance

- 4D (XYZ and time) readout capabilities
- Spatial resolution in 2D < 250 μm
- Sub-nanosecond temporal resolution
- Detection efficiencies > 50%
- Expected counting rates exceeding 100 kcps/cm²

Attractive practical properties

- Robust: intrinsic discharge protection
- Modular design
- Highly scalable technology
- Low costs

Very well suited for, e.g.,

- SANS Small Angle Neutron Scattering
- NMX Neutron Macromolecular Crystallography
- Wavelength resolved Neutron Imaging at Pulsed sources
- nEDM experiment

[https://iopscience.iop.org/article/10.1088/1748-0221/13/08/P08007] [https://www.sine2020.eu/about/the-road-to-the-ess/rpcs-latest-update.html]

RPCs + ¹⁰B₄C - Novel Neutron detection technology

Concept already validated before

Detector tested at the FRM II neutron Facility

- **10 x Double gap ¹⁰B-RPC:** 20 layers of ¹⁰B₄C
- Detection Efficiency: > 60% (4.7 Å)
- Spatial resolution (2D): < 250 μm FWHM</p>

Concept of a fast neutron detector based on ¹⁰B-RPCs

Evaluate the potential of ¹⁰B-RPCs for a detector for beta delayed neutron emission – Simulation with Geant4 v 10.7.2. [https://doi.org/10.1088/1748-0221/17/02/P02016]

Concept of a fast neutron detector based on ¹⁰B-RPCs

- Results show that fast neutron detectors based on ¹⁰B-RPC technology can reach average detection efficiencies of 50 – 60% with high (~1.05) flatness in the neutron energy range of 10⁻⁴ – 5 MeV.
- Efficiency somewhat less than the values of 65 70% demonstrated by BRIKEN detector (the most sensitive of this type) base on ³He tubes.
- But a detector like BRIKEN requires about 150 ³He tubes
- It is currently difficult to get access to such a large number of ³He tubes and the cost will be exorbitant (~ 150 x 20 k€/Tube)
- ¹⁰B₄C coatings are much more cheap (~ 50 k€ for 50 m² of ¹⁰B₄C)

Configuration	Average DE, %	Flatness	¹⁰ B-RPC area, m ²
Five rings	54.1	1.07	31.9
Six rings	54.4	1.06	43.1
Seven rings	54.7	1.03	55.9

Table 4. Detector characteristics for the configurations with different number of rings of ¹⁰B-RPC assemblies.

Design and construction of a prototype for cold/ thermal neutrons

Main goal

Demonstrate the scalability of the ¹⁰B-RPC neutron detection technology and the capability to reach the required counting rate

- Area: 200 mm x 200 mm
- **10 Double gap RPCs** in a Multilayer configuration
- 20 layers of ¹⁰B₄C with optimized thicknesses
- 4224 signal pickup strips
- 394 electronic channels

Design and construction of a prototype for cold/ thermal neutrons

Optimized with ANTS2 to:

- o Improve counting rate capability
- Detection efficiency > 50%
- Reduce neutron scattering
- Uniform response

An increases of the counting rate capability of a **factor of** > **16** relatively to one single-gap RPC, is expected

Glass plates coated by **DC-sputtering** at IPN-Instituto Pedro Nunes, Coimbra: **AI** (Left Fig.) and **Cu** (Right Fig.).

L. Margato , Jornadas LIP 2022, 8-9 Jully, Coimbra, Portugal

Strips (0.3 mm) on **Al** not well defined - More difficult to etch.

Strips (0.3 mm) on Cu very well defined.Issues with adhesion of Dry-Film photoresist to
the Copper layer to be solved.12

SOURCE

Samples mounted

Design and construction of a prototype

- Mechanical components (**DL + MW**) ·
- 0.3 mm thick Al Plates (Al 5754) coated with ${}^{10}B_4C$ (¹⁰B enrichment > 97%) (ESS Detector Group) •
- Main Board for FEE (outsourced)
- FEE + DAQ (RPC group) ready •
- Polyamide PCBs with signal pickup strips for the 2D-Readout → **Ordered**

As-coated sample

Plasma cleaning before the deposition

Prototype being assembled

Outlook

□ Prototype to be tested at SINQ -Swiss Spallation Neutron Source at PSI in October

- In collaboration with Prof. Dr. Florian PIEGSA from University of Bern, Albert Einstein Center for Fundamental Physics (to explore ¹⁰B-RPC technology for an nEDM experiment)
- Go ahead with the nRPC-4D project (EXPL/FIS-NUC/0538/2021)
- **Characterize dark count rate limits for ¹⁰B-RPCs**
- Design a detector for fast neutrons (up to 5MeV) based on ¹⁰B-RPCs to test the concept
 - With the collaboration of RPC and NUC-RIA Groups

Participation in an EU-Consortium

○ Submitted a proposal to a EU-Horizon, NeutronDetection2.0 (Proposal № 101095061)

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Neutron Detectors

Thank you for your attention

Backup Slides

Backup Slides

Instrument	Wavelength	Time	Detector	Spatial	Rate
	range	resolution	area	resolution	sample
	[Å]	[µ s]	[m ²]	[mm]	[n/s/cm ²]
SANS	3 - 20	100 [µs]	[10 - 18]	5	10 ⁹
REFL	2 - 23	100 [µs]	0.41	0.5	10 ⁹
DIRECT	0.8 - 20	10 [µs]	73.12	10 - 20	107
INDIRECT	1 - 8	[µs]	2.4	5	10^{10}
DIFF	0.5 - 20	10-100 [µs]	26.692	2 - 10	10 ⁹
NMX	1.8 - 3.5	[ms]	1.08	0.2	10 ⁸
IMAGING	1 - 10	[µs]	1	0.014-1	10^{8}
ENG	0.1 - 7	10 [µs]	6.4925	5	107

Table 2: Estimated detector requirements for each instrument class in terms of typical wavelength range of measurements, detector area, desired spatial and time resolution and neutron rate on the per cm² on the sample.

Oliver Kirstein et al., Neutron Position Sensitive Detectors for the ESS Proceedings of Science, DOI: https://doi.org/10.22323/1.227.0029

Backup Slides

Counting rate improvement

- Low resistivity materials: e.g. Ceramics, doped glass, PEEK loaded with Carbon ($\rho = 1 3 \times 10^9 \Omega$.cm)
- Thinner resistive electrodes
- Increase the temperature (glass resistivity decreases)
- Front end electronics with higher sensitivity
- Avalanche mode

Counting Rate

Are really RPCs slow detectors?

[L.M.S. Margato and A. Morozov 2018 JINST 13 P08007]