COMPASS and AMBER experiments at CERN

Partons and QCD group

<u>C. Quintans,</u> M. Stolarski, P. Faccioli, C. Pires R. Silva, C. Corte-Real, G. Almeida

9 July 2022, Jornadas LIP 2022

COMPASS & AMBER: at the North Area of the CERN-SPS

M2 beamline: The same beamline can provide muon and hadron beams

QCD: still a lot of questions to answer

Hadron structure

Parton Distribution Function PDF

Probability to find a parton with given fraction of longitudinal momentum (x) In the parent hadron

Transverse momentum dependent TMD PDF Dependence on (x,kT)

Fragmentation Functions FF

Probability that a given parton hadronizes To a hadron type with given fraction of energy z

Generalized Parton distributions GPD

Spatial distribution. Dependence on x and on impact parameter (x,bT)

Form factors

At very low momentum transfer, provide a link to hadron charge radii

Tetraquark? No... observation of a triangle singularity

 $\pi^{-} + p \rightarrow \pi^{-} \pi^{-} \pi^{+} + p$

COMPASS, PRL 127, 082501 (2021)

Double J/psi production at COMPASS

COMPASS, hep-ex 2204.01817

Single-Parton Scattering is enough to explain COMPASS data

Different from LHC, where DPS is very important

Data does not support previous explanations where intrinsic charm was dominant.

Exotic tetraquark states not observed at COMPASS(c.f. LHCb)

6

Unpolarized Drell-Yan cross section: access to Boer-Mulders TMD PDF

@ DIS 2021

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \propto \frac{3}{4\pi} \frac{1}{\lambda+3} \left[1 + \lambda \cos^2 \theta_{CS} + \mu \sin 2\theta_{CS} \cos \varphi_{CS} + \frac{\nu}{2} \sin^2 \theta_{CS} \cos 2\varphi_{CS} \right]$$

Compatibility with past experiments. An indication of non-zero Boer-Mulders effect.

CEDARs – beam particle identification

@ ICHEP 2022

CEDAR: Cherenkov Differential Counter with Achromatic Ring Focus

PMTs response for kaons (MC)

Hadron PID (π , K, p) is essential for Drell-Yan and spectroscopy at AMBER.

Developing a method of artificial neural networks for CEDAR PID: NN as a direct binary classifier is showing promissing results.

Ideal MC
MC reproducing COMPASS problems

EHM at AMBER

The Emergence of Hadron Mass is the leitmotiv for the various proposed measurements. The experiment was approved in December 2020

Phase-I:

Proton charge radius, via muon-proton

elastic scattering

- **Pion PDFs**, via de π^{\pm} -induced Drell-Yan
- Antiproton production cross section,
- an input to Dark Matter searches

Phase-II:

- Kaon structure, via K[±]-induced Drell-Yan
- Pion and Kaon radii, via meson-electron elastic scattering
- Kaon polarizability, via Primakoff reaction
- Strange-sector meson **spectroscopy**

Phase-I: Drell-Yan, an access to pion structure

Phase-I: $J/\Psi \&$ Gluon content in the pion

- Large statistics on J/ψ production at dimuon channel
- Inclusive: due to the hadron absorber, we cannot distinguish prompt production from the rest
- Expected significant feed-down: $\psi(2S)$, χ_{c1} , χ_{c2}
- In the low-pT regime
- Expected to have dominant contribution from $2 \rightarrow 1 \mbox{ processes}$
- Use J/ψ polarization to distinguish production mechanism:

 $\lambda_{\theta}^{\rm CS}$

 $G_E/G_{std.}$ dipol

0.99

0.985

0.975

0.97

- lepton-proton scattering
- hydrogen spectroscopy

At AMBER: access via the electromagnetic form factors, measuring the **elastic muon-proton scattering**

Phase-I: Antiproton production cross section

Dark Matter searches:

Search for products of DM annihilation or decay, as an excess in the spectra of rare cosmic ray components (like <u>antiprotons</u>)

Need good accuracy in their predicted/measured natural flux

WIMP hypothesis

Phase-II: Kaon structure

Kaon structure: a window to the region of interference between the Higgs mechanism and the EHM mechanism

Z-F. Cui, et al. EPJC80(2020)1064, H-W. Lin et al., PRD103(2021)014516

Summary

COMPASS completes 20 years of data taking, a long history of studies of hadron structure and Spectroscopy

The physics scope is now further enlarged by the QCD-related measurements proposed at AMBER

Smooth transition from COMPASS to AMBER experiments, during 2022

The LIP group has both technical (DCS) and physics analysis competences/responsabilities, in both experiments

The group welcomes both newcoming students and senior colleagues who would like to contribute.

