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LIP’s Phenomenology group conducts research
bridging theory and experiment in particle and astro-particle physics.

Its research, while independent,

Its purpose is to strengthen the impact of the overall LIP programme

is centred around areas in which LIP has active experimental activities
and aims to identify areas in which LIP’s broader programme may

evolve in the future.

through the provision of excellent directed phenomenological research. 



PHENOMENOLOGY GROUP 
•created in Jan 2018 as an aggregation of pheno activity within LIP (9.0 FTE) 


◦ group very involved in creation of ‘Big Data and Simulation Competence Centre’ at LIP 


◦ group very involved in the creation of the FCC group [identification of future areas of 
relevance]


◦ developed important synergies with experimental groups


•by 2022 the group has more than doubled its workforce (20.3 FTE) across LIP’s poles 
(Lisboa, Coimbra, Braga) with two main lines of work:


◦ New Physics Searches [mostly in Braga]


◦ Exploring QCD[mostly in Lisboa]
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PEOPLE:: RESEARCHERS
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Guilherme Milhano [Lisboa], 

Exploring QCD

Liliana Apolinário [Lisboa], 

Exploring QCD

Grigorios Chachamis [Lisboa], 

Exploring QCD

João Pires [Lisboa], 

Exploring QCD

Pietro Faccioli [Lisboa], 

Exploring QCD

:: also CMS and COMPASS/AMBERNuno Castro [Minho], 


New Physics Searches

:: also ATLAS

Miguel Romão  [Minho], 

New Physics Searches

:: also Private Sector

Ricardo Gonçalo  [Coimbra], 

New Physics Searches

:: also ATLAS

Pablo Guerrero [Lisboa], 

Exploring QCD

Ruben Conceição [Lisboa], 

Exploring QCD

:: also Auger and SWGO

António Onofre  [Minho], 

New Physics Searches

:: also ATLAS



PEOPLE:: EXTERNAL COLLABORATORS [INVOLVED IN FUNDED PROJECTS]
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Carlos Lourenço, CERN

Néstor Armesto, IGFAE (Galicia)

Carlota Andrés, CPhT (France)

:: former LIP

Mikael Chala, U Granada (Spain) Fabio Dominguez, IGFAE (Galicia)

Carlos Salgado, IGFAE (Galicia)

José Santiago, U Granada (Spain)

Letícia Cunqueiro, U Roma (Italy)

Korinna Zapp, Lund U (Sweden)

:: former LIP

Raghav Elayavalli , Yale U (USA)

Marco van Leeuwen, ,Nikhef (The Netherlands) Werner Porod, Würzburg (Germany)



PEOPLE:: DOCTORAL STUDENTS
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Mariana Araújo [2019-]

Exploring QCD

:: also CMS João Gonçalvest [2021-]


Exploring QCD

João Silva [2021-]

Exploring QCD

:: with IGFAE

André Cordeiro [2022-]

Exploring QCD

:: with IGFAE

Dario Vaccaro [starting Sep 2022]

Exploring QCD
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Guilherme Guedes [2018-]

New Physics Searches

:: with U Granada

Fernando Souza [2022-]

New Physics Searches



PEOPLE:: MASTER STUDENTS
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Tomás Cabrito

Francisco Barreiro

Manuel Mariano

Lénea Luís

João Gomes

Nuno Olavo

:: with Yale

João Mesquita

:: with Rome



SERVICE TO THE SCIENTIFIC COMMUNITY
•Member of Governing Board of Strong2020 and co-spokesperson of the NA3-JET-QGP WP [G. Milhano]


•Member of International Advisory Committee of the Initial Stages Conference [G. Milhano]


•Theory convener for the LHC Heavy Ion working group at the LPCC (2021-…) [L. Apolinário]


•Experimental convenor (Top contact) for the LHC EFT working group at the LPCC (2020-…) [N. Castro]


•Member of the Scientific Program Committee of PANIC 2021 [G. Milhano]


•Member of the Local Organising Committee of PANIC 2021 [L. Apolinário]


•Member of Local and Program Committee of DIS 2022 [G. Milhano]


•Short Term Scientific Mission Coordinator of COST Action 17137 [L. Apolinário (2018 - 2021); M. Romão (2021 - 2022)]


•National Delegate of COST Action 16201  [J. Pires (2018 -2021)]


•Convener of the 2021 INT program on Probing QCD at high energy and density with jets (2021) [L. Apolinário]


•Convener of Heavy-Ions Parallel Session of EPS-HEP 2021 [L. Apolinário]


•Convener of the 12th International workshop on MPI@LHC (2021) [L. Apolinário (Heavy-Ions) and G. Chachamis (High Multiplicities)]


•Member of International Advisory Committee of 13th International workshop on MPI@LHC (2022) [G. Chachamis]


•Portuguese representative in the ECFA Early-Career Researchers Panel (2021-2022)  [L. Apolinário]
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FUNDING
•diversified funding portfolio


◦ national and EU 


◦ different PIs


•national funding [on-going]


◦ THbridgeEXP-II [CERN/FIS-PAR/0032/2021] [until 2024] [G.Milhano]


◦ TopHiggsPheno [CERN/FIS-PAR/0037/2021] [until 2023] [A. Onofre]


◦ Quarkonia [CERN/FIS-PAR/0010/2019] [until 2022] [P. Faccioli]


◦ QCDridge [EXPL/FIS-PAR/1195/2021] [until 2023] [G. Chachamis]


◦ TimeJet [EXPL/FIS-PAR/0905/2021] [until 2023] [L. Apolinário]


•EU funding [on-going]


◦ YoctoLHC ERC Advanced Grant (beneficiary) [until 2024] [C.Salgado (IGFAE); G. Milhano]


◦ STRONG-2020 (NA3-JET-QGP WP coordination) [until 2023] [G. Milhano]
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A MAJOR GROUP MILESTONE

Maria Ramos (Jan 2022)


The interplay between collider and astrophysical probes of non-minimal composite Higgs
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First PhD thesis started and concluded in the group



snapshots



A GLOBAL APPROACH TO PHYSICS BSM
G. Guedes, J. Santiago :: 2107.03429 [hep-ph]; M. Chala, GG., M. Ramos, JS :: 2012.09017 [hep-ph]; MC, GG, MR, JS :: 2106.05291 [hep-ph];  MC, A. Carmona, GG :: 2112.12724 [hep-ph]; S. Bakshi, MC, AC, GG :: 2205.03301 [hep-ph] 

•Model-driven approach to search for specific signatures


◦ dedicated search for Vector Like Leptons with an exotic decay channel


◦ explores complementarity between collider and direct DM probes


•Model-independent approach – extending the SMEFT


◦ At dimension-5: extend the SMEFT with an axion-like particle, s.


◦ At dimension-6: classification of UV extensions which can explain (g-2) of the muon at one-loop


◦ At dimension-8: construction of Green’s basis and calculation of RGEs

12



EFFICIENT EXPLORATION OF PARAMETER SPACES OF BSM MODELS
F. Souza, M. Romão,  N. Castro, M.Nikjoo, W. Porod :: 2206.09223 [hep-ph]

•use AI/ML to efficiently explore parameter space of cMSSM e pMSSM without any prior 
knowledge [no training data]
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producing many valid points in the vicinity of the rolling mean of the best points. Due to the

eager nature of the CMA-ES, we can also observe how it fails to capture smaller regions of

valid points away from the easier region, while producing highly condensed regions of points

where other samplers have only found a few, for example on the upper right quadrant.

FIG. 5: (m̃t =
p
mt̃1

mt̃2
, At) scatter plots of valid points for the cMSSM scan for each

sampler constrained by the Higgs mass and the dark matter relic density.

With the dark matter relic constraint it is informative to look at the (µ,M1)14 scatter plots

as these are the relevant parameters for dark matter phenomenology. These are presented

in fig. 6. Again, we see how the non-random samplers produce far denser regions of valid

14 We omit the equivalent scatter with M2 as in the cMSSM M1 ⇠ M2 and therefore this plot provides no

new insight.
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(a) Mean Euclidean distance vs

e�ciency per episode, for the cMSSM

scan with Higgs mass constraint.

(b) Wasserstein distance vs e�ciency

per episode, for the cMSSM scan with

Higgs mass constraint.

(c) Mean Euclidean distance vs

e�ciency per episode, for the cMSSM

scan with Higgs mass and dark matter

relic density constraints.

(d) Wasserstein distance vs e�ciency

per episode, for the cMSSM scan with

Higgs mass and dark matter relic

density constraints.

FIG. 13: E�ciency vs Distance metrics, computed using valid points, scatter plots for each

sampler for the cMSSM scans.

are properly covering the whole parameter space. In table V we can see the average of the

mean euclidean distances. As expected, the random sampler provides the greater mean

euclidean distance, meaning that it produces valid points which are quite far apart from

each other as a result of the breadth of its sampling. The only exception is for the TPE

sampler in the cMSSM without dark matter relic density constraint, this can be due to

the Gaussian Mixture Model sampling from two far away centres, even though the result is

33

two-order of magnitude improvement in 
sampling efficiency with appropriate coverage 

of parameter spacedifferent density artefacts produced by 
different samplers which can be understood 

[see paper for details]

with BigData and Simulation CC



CLASSIFICATION OF QUENCHED JETS
•distinguish in heavy ion collisions strongly modified jets from unmodified without second-party information


•explore jet representations with varying theoretical input for different ML/DL architectures


◦ jet images :: Convolutional Neural Network (CNN)

14

L. Apolinário, N. Castro, M. Romão, G. Milhano, R. Pedro, F. Peres,  :: 2106.08869 [hep-ph]

with BigData and Simulation CC

jet images :: CNN
Lund plane coordinates [(kT,ΔR) of clustering steps] :: RNN

tabular data [pT and multiplicity] :: DNN



CLASSIFICATION OF QUENCHED JETS

153.2 Performance of the Deep Learning Architectures

The outputs of the DL networks are shown in fig. 9 for the validation data set. During
network training, the Vacuum sample is identified with a true target value of 0 and the
Medium sample with 1. Thus, the distribution of the predicted labels should be closer to 1
for jets obtained from the Medium sample and closer to 0 for jets obtained from the Vacuum
simulation. This is observed for all DL architectures.

Figure 9: Distribution of the di�erent Deep Learning outputs for the Vacuum and Medium
samples.

The final goal of these classifiers is to identify jets that experienced strong jet quenching
e�ects. However, the Medium sample does not yield a pure sample of medium-modified jets,
containing also a collection of reconstructed jets that, probabilistically, did not experience
strong energy loss modifications (events for which xjZ ≥ 1). Nevertheless, while learning to
distinguish between the Vacuum and Medium samples, part of the network will learn the
e�ects of jet quenching on each data representation type. At the same time, this fact limits
the capacity of the models to discern between the pure vacuum-like jets (proton-proton
collisions) and medium-like jets (whose fragmentation pattern was modified by the presence
of in-medium scatterings and in-medium radiation).

The outputs provided by the RNN, DNN and CNN trained on unormalised images show
the best separation between the Medium and Vacuum samples generated by JEWEL+PYTHIA.
The e�ect shows up on the corresponding Receiver Operating Characteristic (ROC) curves

15

network outputs [discriminant]

Figure 10: ROC curve for the separation of the Vacuum and Medium samples using the
di�erent Deep Neural Network models.

represented in fig. 10, where the area under the ROC curve (AUC) is also reported. The
CNN for normalised images has the poorer AUC, 0.67, while the remaining models achieve
an AUC around 0.74. This is an indication that the jet absolute pT and number of con-
stituents play an important role on distinguishing between the Vacuum and Medium sam-
ples. In Section 4, we further investigate the outputs provided by the DL architectures
to understand if the two classes of jets identified by the networks are compatible with the
desired medium- versus vacuum-like jets separation.

Moreover, in table 3, we also present the AUCs obtained for the di�erent DL models
over the same samples after performing a pT > 125 GeV cut. The reason to do this is that
by increasing the minimum pT,jet, while keeping the same cut on pT,Z , we are discarding
most of the events with pT,Z <125 GeV on both samples (the few vacuum events that will
pass this cut will be the ones with a large ISR contamination; in the presence of a medium,
those will fall below the cut). Most of the selected events will then have a Z-boson with a
pT,Z that is near the momentum threshold for the jet. As such, while jet quenching e�ects
will still be present, the magnitude of those will be highly reduced by definition, since those
should come from the high end of the pT distribution. We observe that the AUCs obtained
with the DNN, RNN and CNN with unnormalised images decrease around 10% for jets
with pT >125 GeV, where the pT spectra are identical between the medium and vacuum

16

performance
Model pT,jet >30 GeV pT,jet >125 GeV
Normalised jet images CNN 0.67 0.65
Unnormalised jet images CNN 0.75 0.68
Lund sequences RNN 0.74 0.69
Global DNN 0.73 0.64

Table 3: Area under the ROC curve of the di�erent Deep Learning architectures for the
separation of the Vacuum and Medium samples in the pre-defined case (pT,jet > 30 GeV)
and in the large jet transverse momentum regime (pT,jet >125 GeV).

categories. Contrarily, the performance of CNNs trained on normalised images are only
slightly a�ected by the jet pT .

4 Results and interpretation of the Deep Learning architec-

tures

In order to investigate how the DL networks separate between jets reconstructed from the
Vacuum and Medium sample, we plot the predicted DL outputs versus xjZ in fig. 11.
Simultaneously, since xjZ is a good proxy for the quenching phenomenon at the jet level,
this allows evaluating the potential of the networks for a jet quenching tagging application.
The outputs of the di�erent DL architectures are nearly uncorrelated with xjZ for vacuum
(see appendix A), which is a desired property for the tagger since events for which xjZ di�ers
from 1 in the vacuum result from spurious e�ects, independent of jet quenching through
interaction with the QGP. On the other hand, the DNN, RNN and CNN from unnormalised
images have larger predictions for smaller values of xjZ , i.e. when the jet modification by
the medium is also larger on average. Therefore, these networks are predicting better
the labels of jets which are quenched and misidentifying as vacuum jets with lower xjZ ,
e�ectively behaving as a jet quenching classifier. Using normalised images, the CNN seems
only slightly correlated with xjZ , which means that in principle the decision boundary of
the model is not the most adequate for tagging quenched jets. Furthermore, in appendix A,
we inspect the correlations between the DL discriminants.

To test the results of the di�erent architectures, we created two samples of medium-like
and vacuum-like jets as identified by the output of each DL network. On both samples
generated by JEWEL+PYTHIA (Vacuum and Medium), we classified jets as quenched (if
the DL discriminant was above a given reference value) or vacuum (if the result was below).
This reference value was not optimised and it was chosen for illustration purposes only.
Taking the results of fig. 9, we set this reference cut to 0.7 except for the CNN trained on
normalised images, which was set to 0.6. A comparison of the resulting Z-boson spectra
contrasting the Monte Carlo truth is shown in fig. 12. We kept the solid lines representing
the Vacuum (orange) and Medium (blue) simulations withdrawn from JEWEL+PYTHIA,
while the open symbols reflect the selection identified by each network as being Vacuum
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L. Apolinário, N. Castro, M. Romão, G. Milhano, R. Pedro, F. Peres,  :: 2106.08869 [hep-ph]

with BigData and Simulation CC

worse performance but more robust



CLASSIFICATION OF QUENCHED JETS
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Figure 14: Reconstructed jet radial profile (average number of constituents) r, for the dif-
ferent Deep Learning architectures. Monte Carlo truth from JEWEL+PYTHIA is provided
in solid symbols for the Vacuum and Medium samples and a subset of events selected by the
DL discriminant appears in open symbols. The DL output selection employed to identify
vacuum-like jets (open blue) and medium-like jets (open orange) is made explicit in the
legend of each plot.

that shows the highest deviation because it is trained only on the relative fragmentation. It
follows the Lund planes and unormalised jet images. We note that while the presence of jet
quenching will induce a narrower average jet radial profile, the opposite is not necessarily
verified. For this reason, the CNN trained on normalised images results into a more flat
xjZ distribution despite showing a selection of very narrow jets. On the other hand, the DL
networks exploring unnormalised images or Lund planes identify a not so narrow jet, but
that indeed lost a significant amount of energy relative to its initial momentum (pT,Z). The
Global DNN, whose training did not contain any information on the jet substructure, still
selects jets whose centre is depleted concerning the Medium sample. These jets are more
evenly populated, and thus likely to contain medium-induced radiation that travelled along
the jet direction. While retaining this energy, these jets continue to experience collisional
energy loss as its absolute multiplicity continues to be smaller than the Medium Monte
Carlo reference.

Finally, the results on the jet mass are shown in fig. 15. As mentioned before, this
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Figure 12: Transverse momentum spectra of the reconstructed Z-boson pT,Z , for the di�er-
ent Deep Learning architectures. Monte Carlo truth from JEWEL+PYTHIA is provided in
solid symbols for the Vacuum and Medium samples and a subset of events selected by the
DL discriminant appears in open symbols. The DL output selection employed to identify
vacuum-like jets (open blue) and medium-like jets (open orange) is made explicit in the
legend of each plot.

jets is also more flat when compared to the Medium sample. The distribution of the output
of this network (fig. 9) for the Medium and Vacuum sample overlaps significantly, making it
more di�cult to select a suitable reference value. Nonetheless, the medium-like xjZ provided
by this CNN seems to enhance medium-like features with respect to the medium sample as
its xjZ distribution is displaced towards smaller values. Training only on jet-wise variables,
such as the Global DNN, provides an excellent description of the vacuum xjZ . As expected,
using pT,jet during the training helps to describe observables that are exclusively sensitive
to energy loss e�ects. The medium-like xjZ provided by the Global DNN is shifted towards
the left and has approximately the same shape as the Medium Monte Carlo truth. By using
a more complete set of jet information - unnormalised images or Lund planes - we see that
the medium-like distribution selected by the corresponding DL architectures is even more
peaked at lower xjZ . The vacuum-like distribution is slightly displaced from the Monte
Carlo truth Vacuum sample. This might also hint that these networks can identify jets in
the Medium JEWEL+PYTHIA sample that did not experience major interactions with the
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transverse momentum spectrum

with BigData and Simulation CC

L. Apolinário, N. Castro, M. Romão, G. Milhano, R. Pedro, F. Peres,  :: 2106.08869 [hep-ph]

pp jets reliably identified as unmodified

purified sample of modified jets in AA 



JET TIME RECLUSTERING
L. Apolinário, A. Cordeiro, K. Zapp :: 2012.02199 [hep-ph]

•recluster jets in formation time 
[p=0.5 in gen-kT measure]
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•maximizes correlation between MC 
parton shower and jet reclustering info 

A jet quenching classifier: 
Important step towards a tomographic analysis of the QGP!

Allows selection of two populations


○ “Early” jets: τ < 1 fm/c (strongly modified)


○ “Late” jets: τ > 3 fm/c (weakly modified)



[REVIEW] HEAVY-QUARKS AND JETS AS PROBES OF THE QGP
L. Apolinário, M. Winn, Y-J. Lee :: 2203.16352 [hep-ph] to appear in Prog.Nucl.Part.Phys  

Address in depth fundamental questions in heavy-ion 
collisions at RHIC and LHC 

◦ How factorized are the initial-state from final-state 

effects (colliding nuclei)?

◦ How can we infer, from data-driven observations, the 

elementary QCD parton-medium interactions (jet 
quenching)?


◦ What are we learning about the Quark-Gluon 
Plasma?


◦ How is the Quark-Gluon Plasma formed and 
evolving?


◦ Are hadronization mechanisms changed by the 
presence of a Quark-Gluon Plasma?


◦ (….)
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Towards a unified QCD description 
from soft to hard probes of the QGP



QUARKONIA
P. Faccioli, C. Lourenço, T. Madlener :: 2006.15446 [hep-ph]; M. Araújo,P. Faccioli, C. Lourenço :: to appear soon 
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low-pT data (p-A and π-A) including 

predictions for AMBER

First data-driven determination of the 
χc1, χc2 and direct J/ψ polarizations 

Global studies of quarkonium production with:

LHC pp data



[LECTURE NOTES] QUARKONIA
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Lecture	Notes	in	Physics	(vol.	1002) 
to	appear	in	August,	OPEN	ACCESS

https://link.springer.com/book/9783031088742

Polarization studies beyond quarkonium



QUARKONIA
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M. Araújo :: pheno PhD thesis work 

Quarkonium production at LHC energies: understanding hadron formation by the strong force

Short- and long-distance scaling patterns 
indicate universal pT /M behavior


→ extend analysis in two dimensions not yet 
considered: rapidity (y) and √s


An empirical parametrization of the partonic 
cross section coupled with proton PDFs


reproduces measurements from multiple states 
and experiments vs across pT /M, y and √s



FORWARD PHYSICS AND HIGH ENERGY QCD
22

G. Chachamis et al.:: 2203.07462 [hep-ph]; N. León, GC, A. Sabio Vera:: 2106.11255 [hep-ph]; GC, AS-V:: 2203.12418 [hep-th]; AL, GC, AS-V:: 2012.09664 [hep-ph];GC et al.:: 2203.12852 [hep-ex] 

Rapidity-rapidity correlations between jets in 
multijet final states with BFKLex MC

The formal approach to study diffractive 
processes with MC techniques



NNLO GRIDS FOR JET PRODUCTION AT THE LHC
J.Pires et al., NNLO interpolation grids for jet production at the LHC:: 2207.XXXX [hep-ph]
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•New interpolation grids for numerous jet datasets at the LHC computed for ATLAS&CMS


•ingredients: → theory predictions from MC NNLOJET


•output → pQCD cross sections projected on grids in FASTnlo and APPLGRID formats 


•Interpolation of the MC cross section on a (x1,x2,Q2) grid allow fast recalculations of the cross section for 
several PDF and ⍺s values. Ex: CMS 8 TeV 3D dijet cross section:


 


•Grid size: few GB ; NNLO cross section evaluation time: few minutes


•Proofs of principle: → gluon PDF fit with HERA DIS+CMS 8 TeV dijet data with xfitter                                                                                                                                          
→  gluon PDF+⍺s fit at NNLO (for two renormalisation and factorization scale choices)             

Scale uncertainty bands: LO, NLO, NNLO

Gluon PDF fit: HERA DIS+CMS 8 
TeV 3D dijet data

Fitted ⍺s values obtained with the CMS 
dijet data and other jet cross sections

⍺s  scale uncertainties smaller at NNLO and smaller ⍺s values 
(CMS 3D dijet data)
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(a) Case 1 (ideal), τ = 4.9 fm/c. (b) Case 2 (viscous), τ = 4.9 fm/c.

(c) Case 1 (ideal), τ = 7.7 fm/c. (d) Case 2 (viscous), τ = 8.3 fm/c.

(e) Case 1 (ideal), τ = 10.5 fm/c. (f) Case 2 (viscous), τ = 11.7 fm/c.

Figure 4. Plots of δε
ε0
(ηs = 0) as functions of x and y at three different times τ for Case 1 (ideal fluid;

left panels) and 2 (viscous fluid; right panels). Note that we have used different color bars in different
panels; assessing the strength of the perturbations (in this and the next two figures also) requires
looking at the color bars to see the magnitudes corresponding to the reddest and bluest colors.
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