Measurements of particle polarization

- Dilepton decays of vector particles (Z, W, photon, J/ψ , etc.)
- The Lam-Tung relation

Pietro Faccioli

Course on "Physics at the LHC" May 11th, 2022

Coming soon:

Lecture Notes in Physics

Pietro Faccioli **Carlos Lourenço**

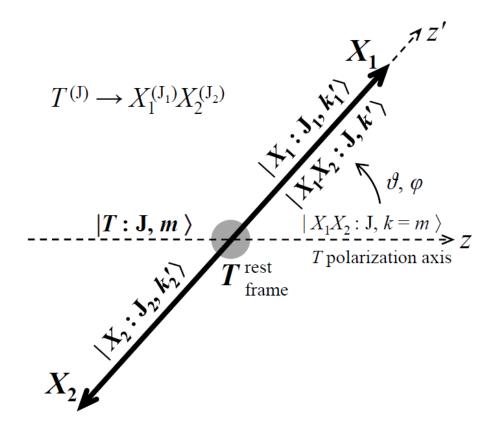
Particle Polarization in **High Energy** Physics

An Introduction and Case Studies on Vector Particle Production at the LHC

Lecture Notes in Physics, Springer, 2022 ISBN: 978-3-031-08874-2 **Open Access**

Basics

Measure **polarization** of a particle = measure the (average) **angular momentum composition** in which the particle is produced, by studying the **angular distribution** of its **decay** in its rest frame

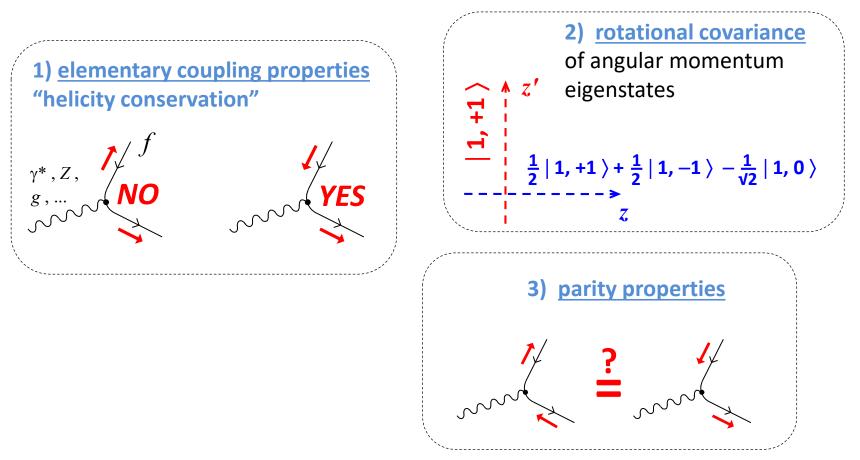


Polarization of vector particles

 $J = 1 \rightarrow$ three J_z eigenstates $|1, +1\rangle$, $|1, 0\rangle$, $|1, -1\rangle$ wrt a certain z

The decay into a fermion-antifermion pair is an especially clean case to be studied

The shape of the observable angular distribution is determined by a few basic principles:

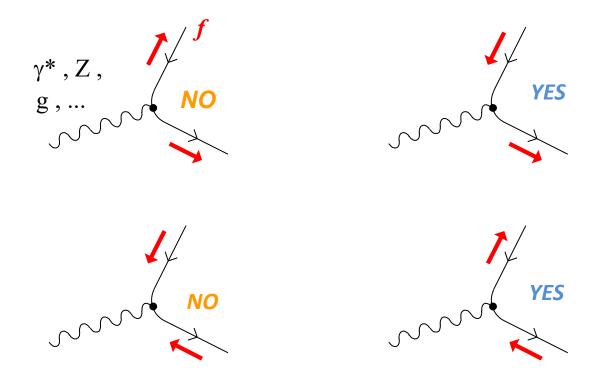


1: helicity conservation

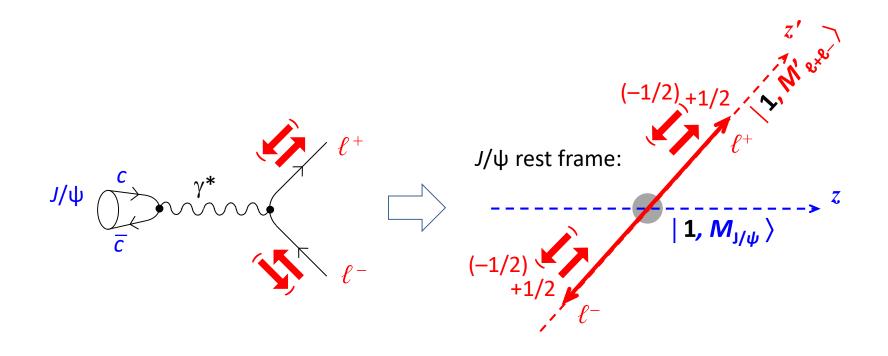
Relevant property for cases considered here:

EW and strong forces preserve the *chirality* (L/R) of fermions.

In the relativistic (massless) limit, *chirality* = *helicity* = *spin-momentum alignment* → the *fermion spin never flips* in the coupling to gauge bosons:



example: dilepton decay of J/ψ

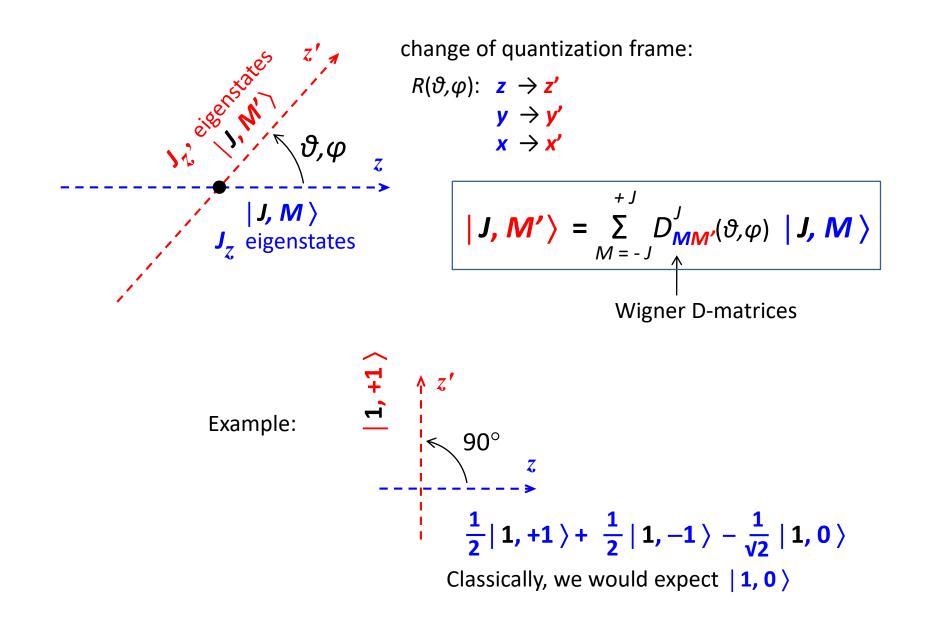


 J/ψ angular momentum component along the polarization axis *z*:

 $M_{J/\psi} = -1, 0, +1$ (determined by *production mechanism*)

The **two leptons** can only have total angular momentum component $M'_{e^+e^-} = +1 \text{ or } -1$ along their common direction z'**0** is forbidden

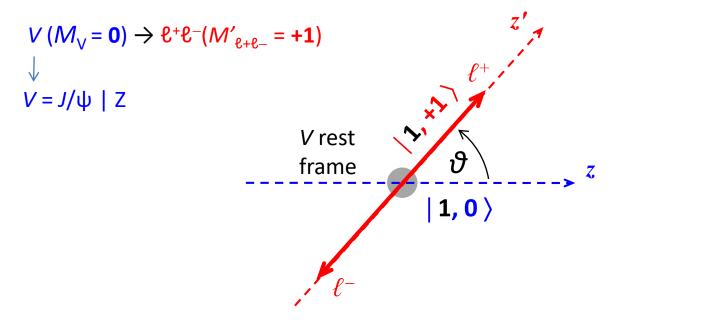
2: rotational covariance of angular momentum eigenstates



example: M = 0

8

Z

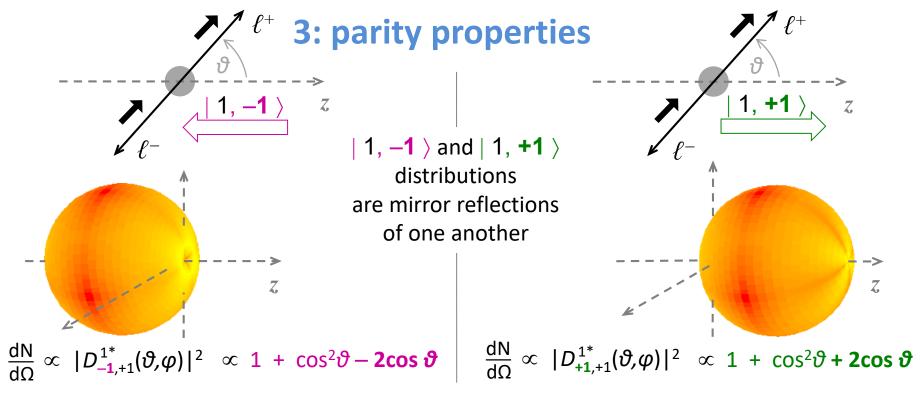


 $|\mathbf{1, +1}\rangle = D_{-1,+1}^{1}(\vartheta,\varphi) |\mathbf{1, -1}\rangle + D_{0,+1}^{1}(\vartheta,\varphi) |\mathbf{1, 0}\rangle + D_{+1,+1}^{1}(\vartheta,\varphi) |\mathbf{1, +1}\rangle$

→ the J_{z} , eigenstate $|1, +1\rangle$ "contains" the J_{z} eigenstate $|1, 0\rangle$ with component amplitude $D_{0,+1}^{1}(\vartheta, \varphi)$

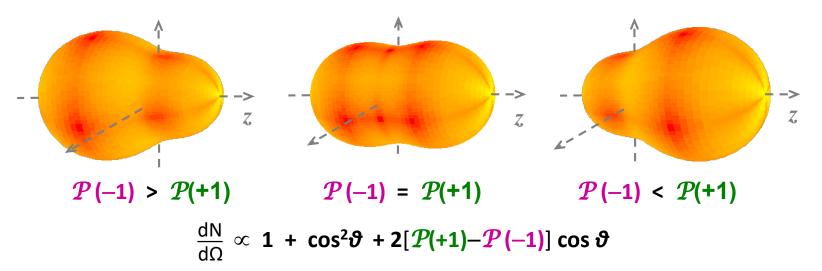
 \rightarrow the decay distribution is

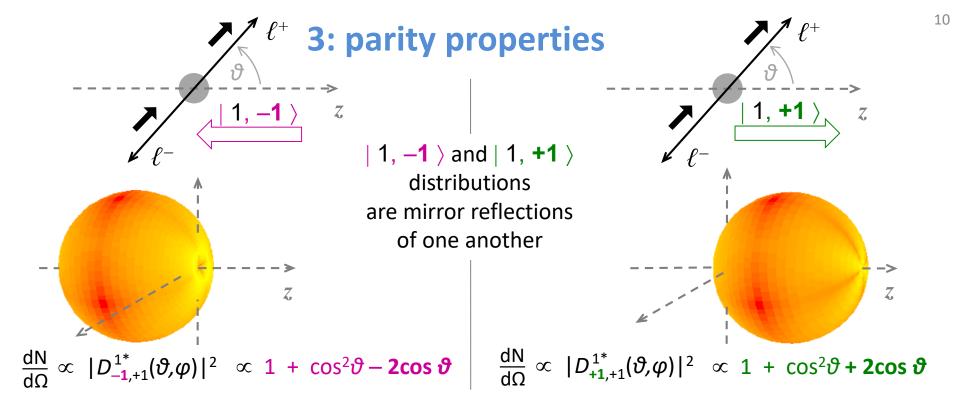
$$\begin{aligned} |\langle \mathbf{1}, \mathbf{+1} | \mathcal{O} | \mathbf{1}, \mathbf{0} \rangle|^2 & \propto |D_{\mathbf{0}, \mathbf{+1}}^{\mathbf{1}^*}(\vartheta, \varphi)|^2 &= \frac{\mathbf{1}}{2} \left(\mathbf{1} - \cos^2 \vartheta \right) \\ \theta^+ \theta^- &\leftarrow J/\psi \end{aligned}$$



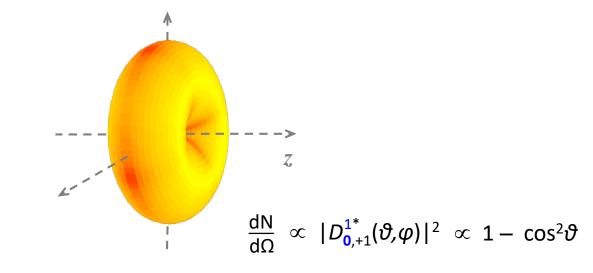
9

Are they equally probable?

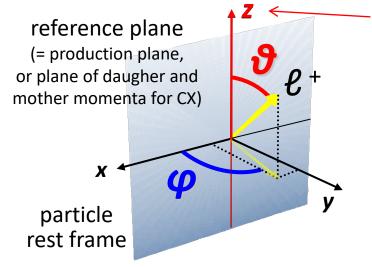




Decay distribution of $|1, 0\rangle$ state is always parity-symmetric:

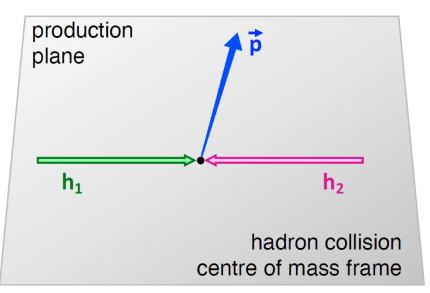


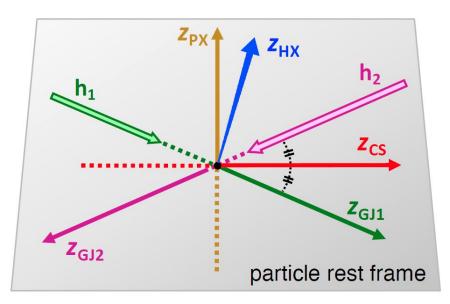
General distribution: reference frame



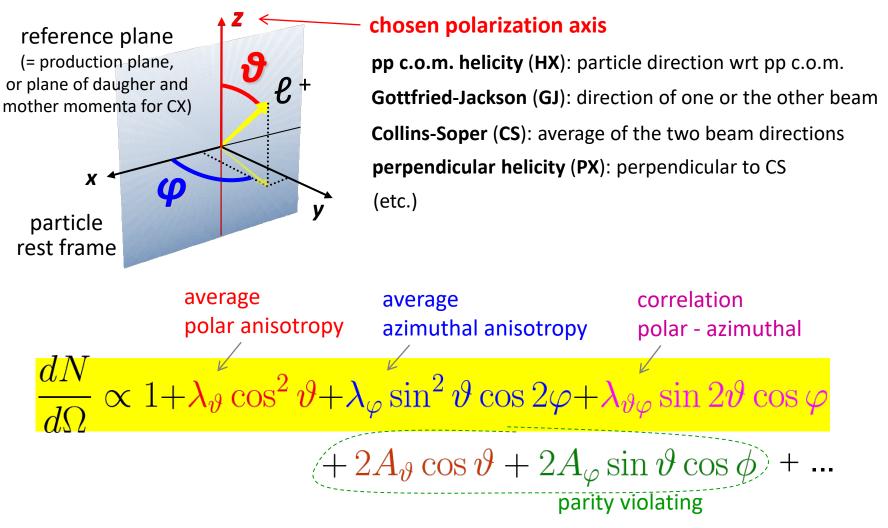
chosen polarization axis

pp c.o.m. helicity (HX): particle direction wrt pp c.o.m. Gottfried-Jackson (GJ): direction of one or the other beam Collins-Soper (CS): average of the two beam directions perpendicular helicity (PX): perpendicular to CS (etc.)





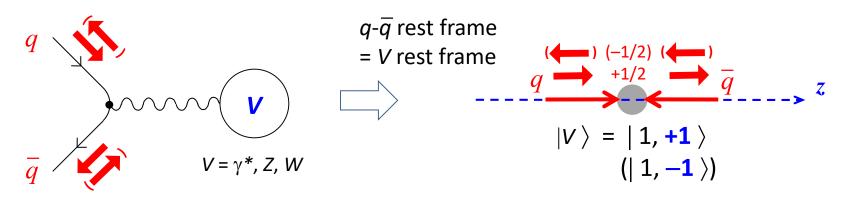
General distribution: shape

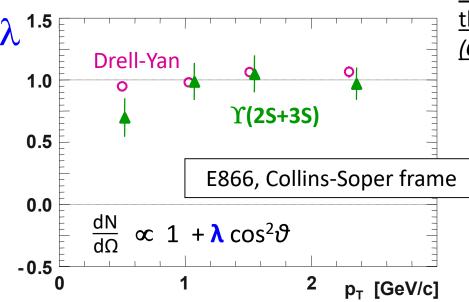


 λ_{ϑ} , λ_{φ} , $\lambda_{\vartheta\varphi}$, etc. *depend* on the chosen frame [Faccioli *et al.*, EPJC 69, 657 (2010)]

Why "transverse" (photon-like) polarizations are common

We can apply **helicity conservation at the** *production* **vertex** to predict that all *vector* states produced in *fermion-antifermion annihilations* ($q-\overline{q}$ or e^+e^-) at Born level have *transverse* polarization





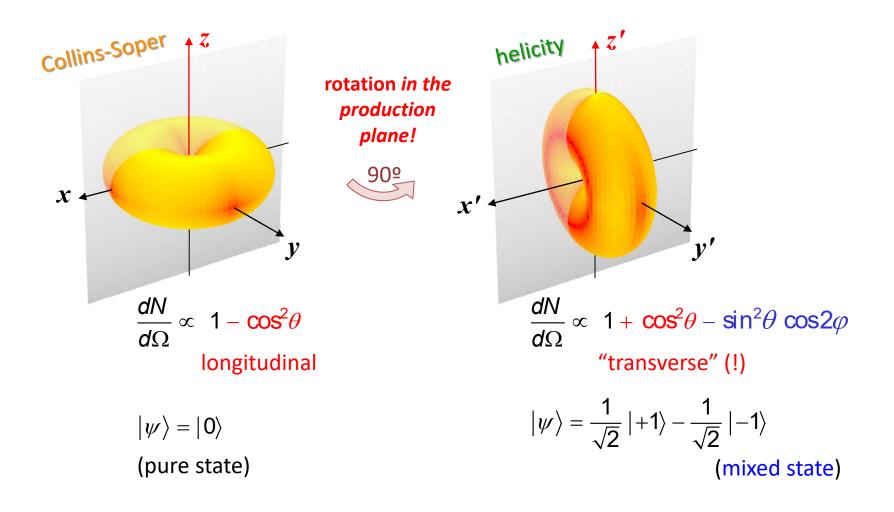
<u>The "natural" polarization axis in this case is</u> the relative direction of the colliding fermions (Collins-Soper axis)

13

Drell-Yan is a paradigmatic case But not the only one

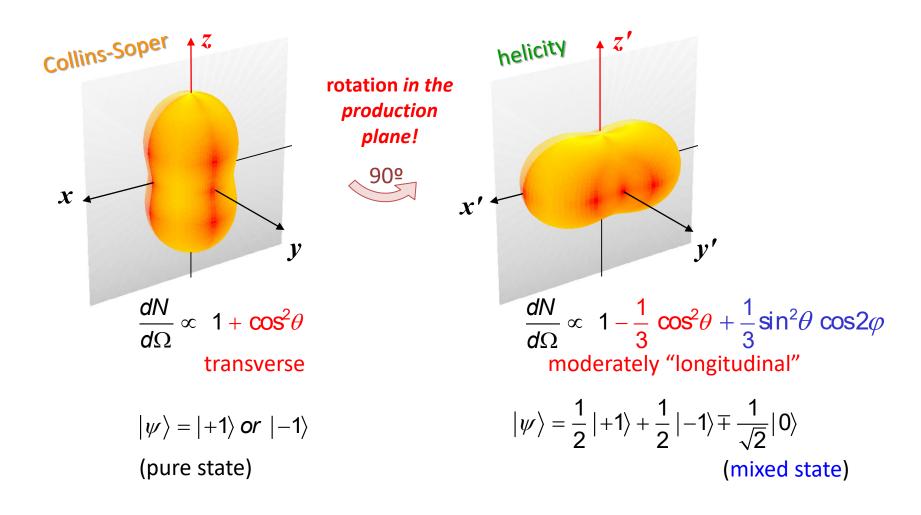
The observed polarization depends on the frame

For $|p_{\rm L}| << p_{\rm T}$, the CS and HX frames differ by a rotation of 90^o



The observed polarization depends on the frame

For $|p_{\rm L}| << p_{\rm T}$, the CS and HX frames differ by a rotation of 90^o



All reference frames are equal... but some are more equal than others

What do different detectors measure with arbitrary frame choices?

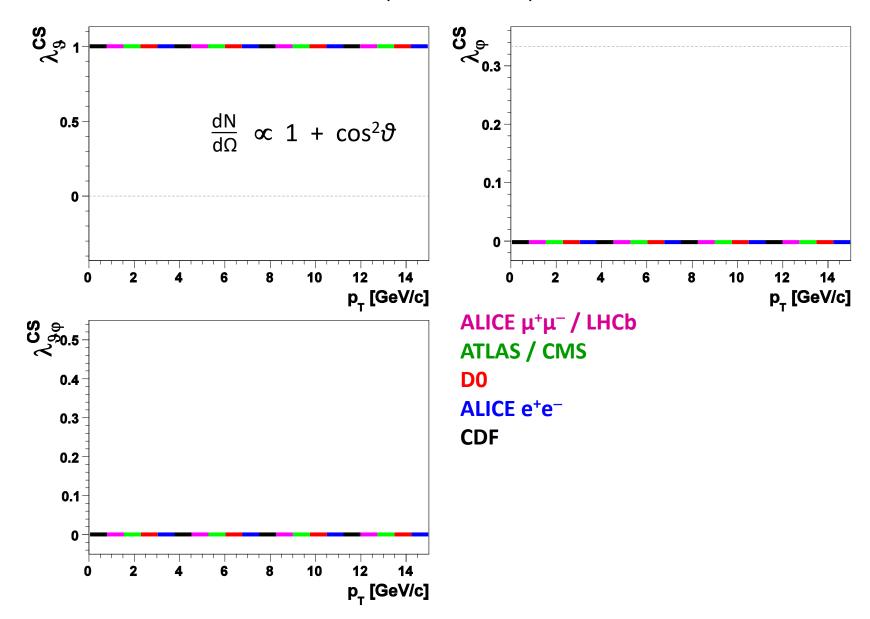
Gedankenscenario:

- dileptons are fully transversely polarized in the CS frame
- the decay distribution is measured at the Υ(1S) mass by 6 detectors with different dilepton acceptances:

CDF	y < 0.6
D0	y < 1.8
ATLAS & CMS	y < 2.5
ALICE e ⁺ e ⁻	y < 0.9
ALICE $\mu^+\mu^-$	2.5 < y < 4
LHCb	2 < y < 4.5

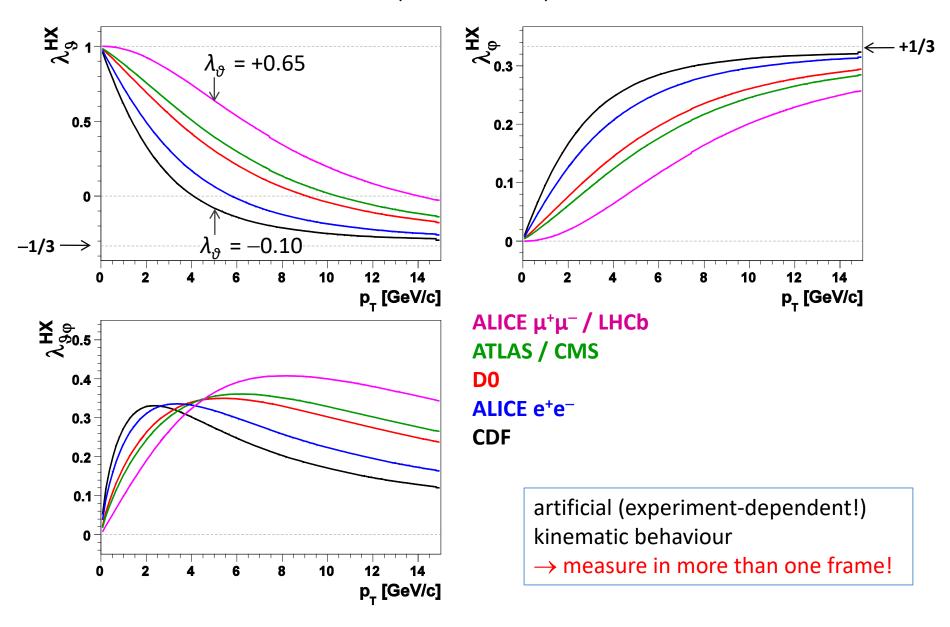
The lucky frame choice

(CS in this case)



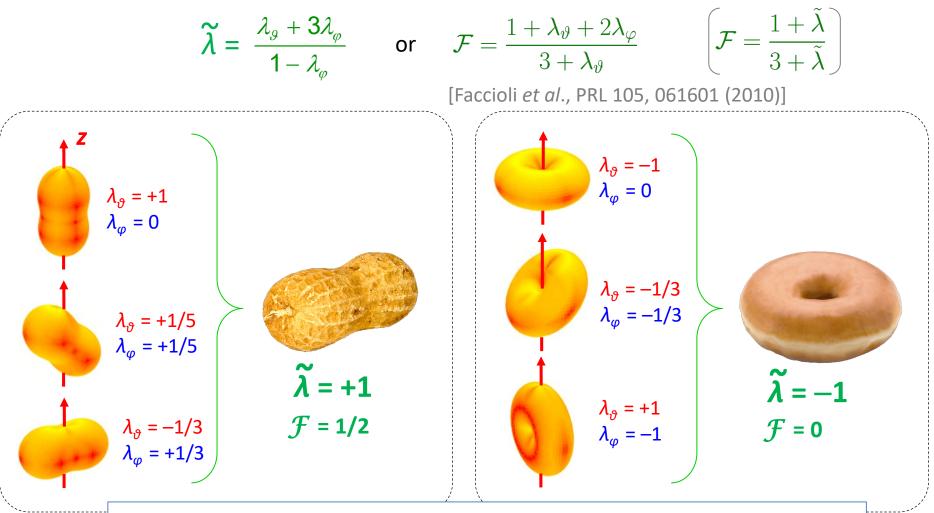
Less lucky choice

(HX in this case)



A complementary approach: frame-independent polarization

The *shape* of the distribution is (obviously) frame-invariant (= invariant by rotation) \rightarrow it can be characterized by a frame-independent parameter, defined e.g. as

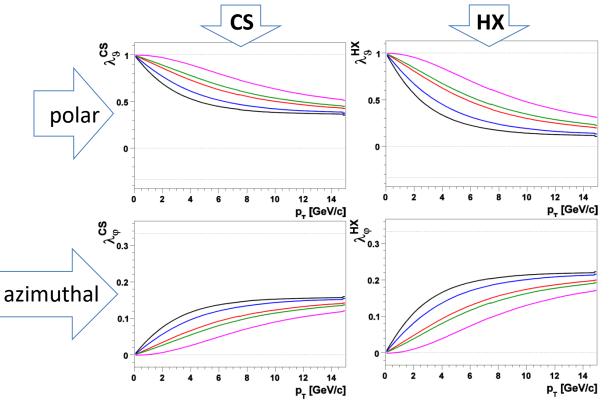


frame transformations HX \leftrightarrow CS \leftrightarrow GJ: all rotations in the production plane!

Example

Gedankenscenario: vector state produced in this subprocess admixture: (assumed indep.

- 60% processes with natural transverse polarization in the CS frame
- 40% processes with natural transverse polarization in the HX frame



 $M = 10 \, \text{GeV}/c^2$

CDF	y < 0.6
D0	y < 1.8
ATLAS/CMS	y < 2.5
ALICE e ⁺ e ⁻	y < 0.9
ALICE μ ⁺ μ ⁻	2.5 < y < 4
LHCb	2 < y < 4.5

In neither frame we recognize that the natural polarization is always fully transverse!

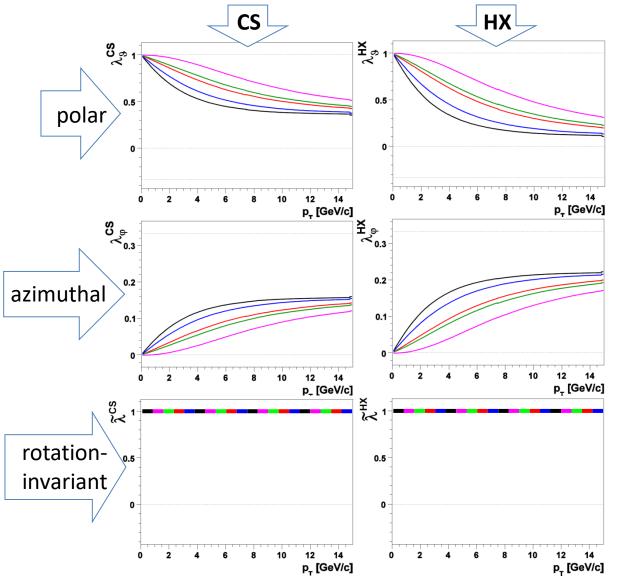
of kinematics,

for simplicity

Example

Gedankenscenario: vector state produced in this subprocess admixture: (assumed indep.

- 60% processes with natural transverse polarization in the CS frame
- 40% processes with natural transverse polarization in the HX frame



```
e of kinematics,
ne for simplicity
```

```
M = 10 \text{ GeV}/c^{2}
CDF |y| < 0.6
D0 |y| < 1.8
ATLAS/CMS |y| < 2.5
ALICE e<sup>+</sup>e<sup>-</sup> |y| < 0.9
ALICE \mu^{+}\mu^{-} 2.5 < y < 4
LHCb 2 < y < 4.5
```

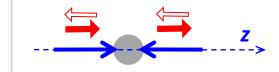
In neither frame we recognize that the natural polarization is always fully transverse!

- Immune to "extrinsic" kinematic dependences
- \rightarrow less acceptance-dependent
- \rightarrow facilitates comparisons
- useful as closure test

Frames for Drell-Yan, Z and W polarizations

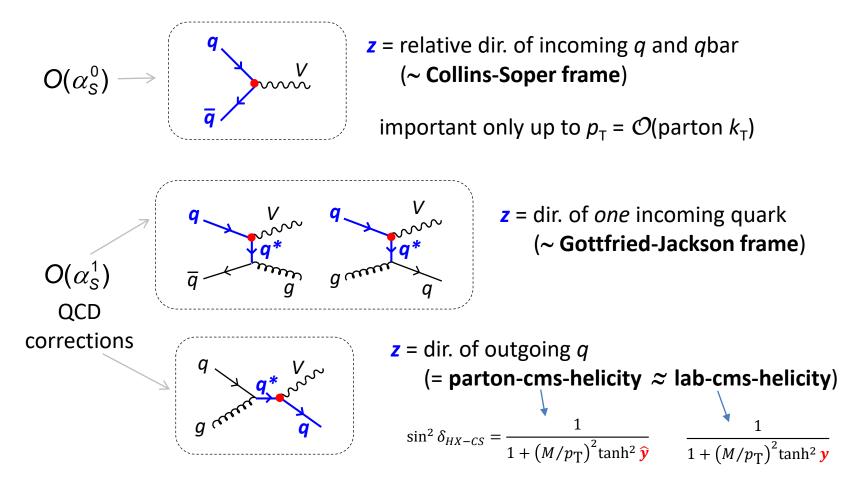
• polarization is *always fully transverse*...

 $V = \gamma^*, Z, W$



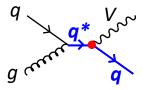
Due to helicity conservation at the $q-\overline{q}-V$ ($q-q^*-V$) vertex, $J_z = \pm 1$ along the $q-\overline{q}(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*



"Optimal" frames for Drell-Yan, Z and W polarizations

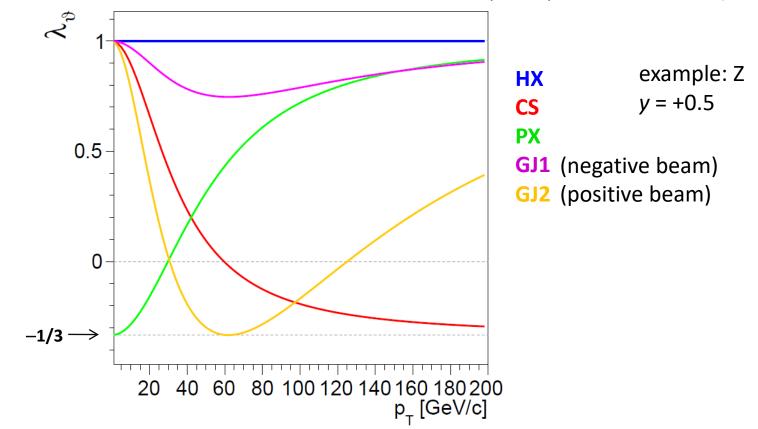
Different subprocesses have different "natural" quantization axes



For *s*-channel processes the natural axis is the direction of the outgoing quark (= direction of dilepton momentum)

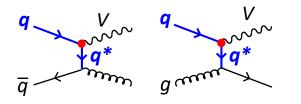
 \rightarrow optimal frame (= maximizing polar anisotropy): HX

(neglecting parton-parton-cms vs proton-proton-cms difference!)



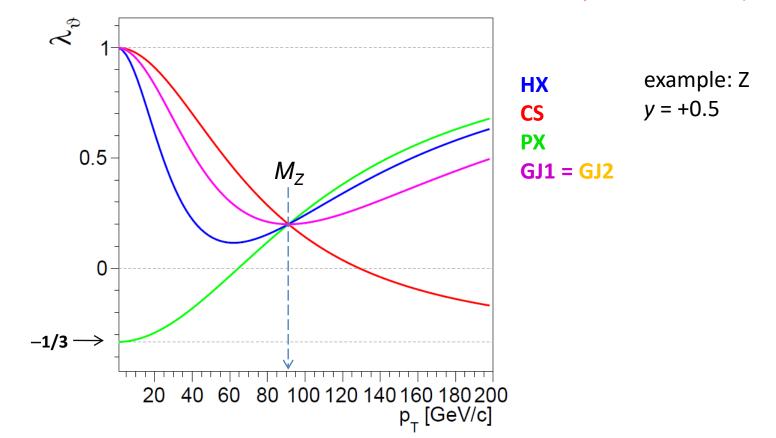
"Optimal" frames for Drell-Yan, Z and W polarizations

Different subprocesses have different "natural" quantization axes

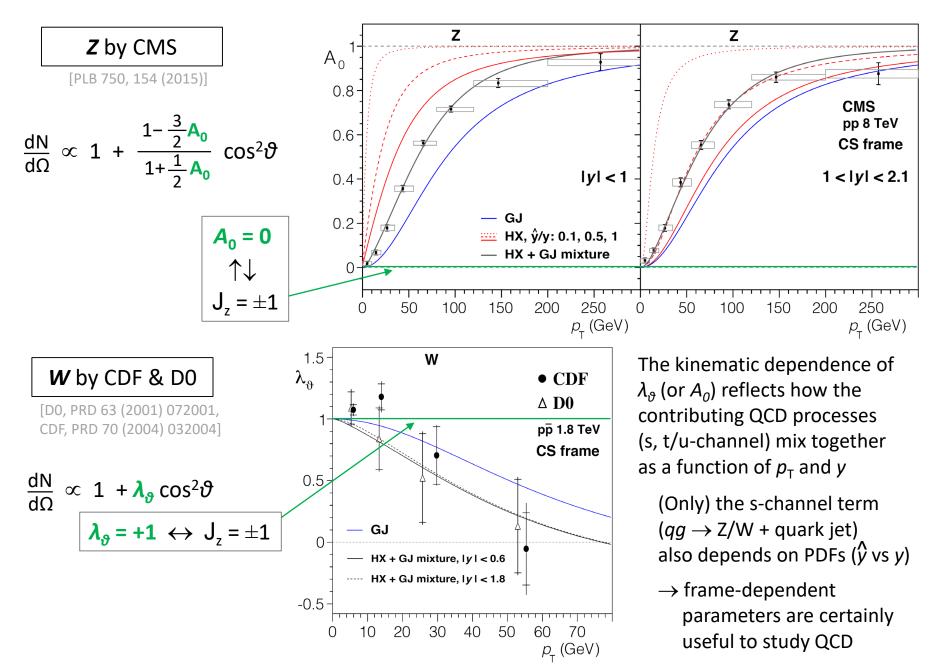


For **t**- and **u**-channel processes the natural axis is the direction of either one or the other incoming parton (~ "Gottfried-Jackson" axes)

 \rightarrow optimal frame: geometrical average of GJ1 and GJ2 axes = CS ($p_T < M$) and PX ($p_T > M$)



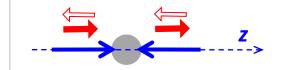
A look at Z and W data



Rotation-invariant Drell-Yan, Z and W polarizations

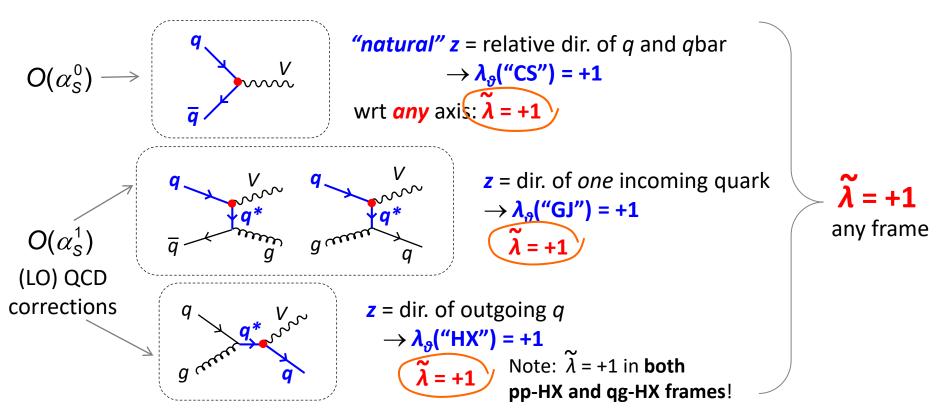
• polarization is *always fully transverse*...

 $V = \gamma^*, Z, W$



Due to helicity conservation at the $q-\overline{q}-V$ ($q-q^*-V$) vertex, $J_z = \pm 1$ along the $q-\overline{q}(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*



In all these cases the *q*-*q*-*V* lines are in the production plane (*"planar" processes*) The CS, GJ, pp-HX and qg-HX axes only differ by a rotation in the *production plane*

The Lam-Tung relation

PHYSICAL REVIEW D

VOLUME 21, NUMBER 9

Parton-model relation without quantum-chromodynamic modifications in lepton pair production

> C. S. Lam Wu-Ki Tung

much more to the quark-QCD modifications in LPP than just legrated Drell-Yan cross-section formula. lepton angular distributions are controlled by structure functions which obey parton-model relations^{3,4} similar to those between F_1 and F_2 in deep-inelastic scattering (DIS). How are these relations affected by perturbative QCD corrections? The answer to this question is guite surprising: At least one of these relations—the exact counterpart of the Callan-Gross⁵ relationsis not modified at all by first-order QCD corrections, although individual terms in this relation v be subject to large corrections. In the renote, we spell out explicitly the part 11 as the contrast betw

independently of the polarization frame

Lam-Tung relation

 $\lambda_{q} + 4\lambda_{a} = 1$

Eq. (2)]. This appears to be a rather remarkable result; we are not aware of any other partonmodel result which is not affected by QCD corrections. For this reason, we sketch in the mendix a derivation of Eq. (5) from the dia-

A which is more di

though for LPP, the helicity structure functions depend on the choice of coordinate axes⁴ (e.g., Gottfried-Jackson, Collins-Soper, etc.), this relation remains frame independent—i.e., if the QCD-quark-parton model is correct, the two structure functions W_L and $W_{\Delta\Delta}$ must be related by Eq. (7), for any choice of axes in the leptonpair center-of-mass frame. This strong result again demonstrates the significance of this relation.

We know the angular distribution of the lepton

The Lam-Tung relation after 27 years

PHYSICAL REVIEW D 76, 074006 (2007)

Transverse momentum dependence of the angular distribution of the Drell-Yan process

Edmond L. Berger,^{1,*} Jian-Wei Qiu,^{1,2,†} and Ricardo A. Rodriguez-Pedraza^{2,‡}

We calculate the transverse momentum Q_{\perp} dependence of the helicity structure functions for the hadroproduction of a massive pair of leptons with pair invariant mass Q. These structure functions determine the angular distribution of the leptons in the pair rest frame. Unphysical behavior in the region $Q_{\perp} \rightarrow 0$ is seen in the results of calculations done at fixed order in QCD perturbation theory. We use current conservation to demonstrate that the unphysical inverse-power and $\ln(Q/Q_{\perp})$ logarithmic divergences in three of the four independent helicity structure functions share the same origin as the divergent terms in fixed-order calculations of the angular-integrated cross section. We show that the resummation of these divergences to all orders in the strong coupling strength α_s can be reduced to the solved problem of the resummation of the divergences in the angular-integrated cross section, resulting in well-behaved predictions in the small Q_{\perp} region. Among other results, we show the resummed part of the helicity structure functions as a function of Q_{\perp} to all orders in α_s .

Is this really a "QCD result" ?

The Lam-Tung relation today

A fundamental result of the theory of vector-boson polarizations (Drell-Yan, directly produced Z and W) is that, at leading order in perturbative QCD,

 $\lambda_g + 4\lambda_{\varphi} = 1$ independently of the polarization frame *Lam-Tung relation*

This identity was considered as a surprising result

Today we know that it is only a *special* case of general frame-independent polarization relations, corresponding to a *transverse* intrinsic polarization:

$$\widetilde{\lambda} = \frac{\lambda_{g} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}} = +1 \quad \Longrightarrow \lambda_{g} + 4\lambda_{\varphi} = 1$$

It is not really a "QCD relation":

on the contrary, all "QCD details" (parton types, topology, parton PDFs) disappear from it! It is simply a consequence of

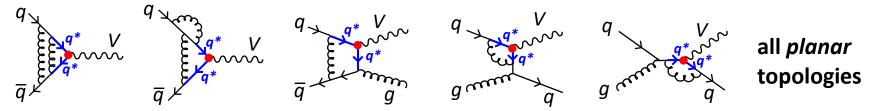
1) rotational invariance

2) properties of the E.W. quark-photon/Z/W couplings (helicity conservation)

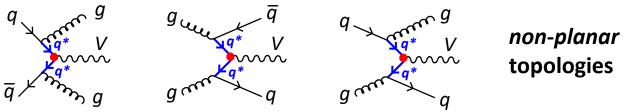
What about higher-order QCD corrections?

Any correction with "internal" gluons is harmless to the Lam-Tung relation: helicity conservation still holds at the q^*-q^*-V vertex;

the **natural polarization axis** may change direction and become "inapproximable" experimentally (virtual quark line), but it *remains in the production plane*



Processes leading to 3 (or more) final states are different:



Still, because of helicity conservation, the V polarization is **transverse along some axis**; but now such axis can *"exit" the production plane*

The tilt induces a **minimal** or **negligible** modification on λ_{ϑ} (the tilt of a "vector" produces the same reduced projection independently of the direction of the tilt)

Instead, λ_{φ} (measured wrt the *production* plane, which no longer *contains* the event) **is rotationally smeared** and does not compensate for the reduced λ_{ϑ}

 $\rightarrow \mathcal{F} < 1/2$, $\tilde{\lambda} < +1$: the Lam-Tung relation is violated (but the invariants remain invariant!)

In practice, the Lam-Tung relation characterizes 2-to-1 and 2-to-2 processes

A quantitative discriminant of physics cases

Even when the Lam-Tung relation is violated,

 λ can always be defined and is *always frame-independent*

 \rightarrow any violation, $\tilde{\lambda} - 1 \neq 0$, is quantitatively frame-independent

 $\mathcal{F} = \frac{1 + \tilde{\lambda}}{3 + \tilde{\lambda}}$

 $\lambda = +1 \rightarrow$ Lam-Tung. New interpretation: only *vector boson – quark – quark* $(\mathcal{F} = 1/2)$ | couplings (in planar, 2-to-1 and 2-to-2 processes) \rightarrow automatically verified in DY at QED & LO QCD levels and in several higher-order QCD contributions

 $\widetilde{\lambda} = +1 - \mathcal{O}(0.1)$ with $\widetilde{\lambda} \rightarrow +1$ for $p_{\mathrm{T}} \rightarrow 0$ ($\mathcal{F} \rightarrow 1/2$)

 \rightarrow same, "ordinary" vector-boson – quark – quark couplings, but in *non-planar* 2-to-3+ processes (e.g. Z + n jets, with n>1) OR *smearing* due to intrinsic parton k_{T}

 $-1 < \widetilde{\lambda} << +1$ **(0 < 𝒯 << 1/2)**

$$+1 < \widetilde{\lambda} < +\infty$$
(1/2 < \mathcal{F} < 1)

→ contribution of *different/new couplings or processes*

(e.g.: Z from Higgs, W from top, triple $ZZ\gamma$ coupling, higher-twist effects in DY production, etc.)

 $\begin{array}{c} \widetilde{\lambda} < -1 \\ (\mathcal{F} < \mathbf{0} \text{ or } \mathcal{F} > \mathbf{1}) \end{array} \rightarrow \text{experimental mistake} \end{array}$