Flavour Anomalies and BSM searches

Michele Gallinaro LIP Lisbon May 10, 2022

- ✓ Introduction
- Particle reconstruction and tau leptons
- ✓ SM: W, Top and Higgs boson
- ✓ BSM searches and rare decays

SM confirmed by the data

Experimental measurements

Measurements of different processes

- Rare processes, EFT interpretations, theory calculations
- Deviations may indicate NP

Search for new phenomena

...How?

- Indirect searches
 - precision measurements, event properties, etc.
- Direct searches
 - resonances, specific final states, model-(in)dependent searches, etc.
- Production and decay rates, event characteristics, advanced tools

Search for New Physics

direct searches

indirect searches

Flavours

- 6 quarks and 6 leptons arranged in 3 families
 - get their masses through interaction with Higgs boson
- Families are identical except for their masses
 - same interaction with gauge bosons
- "flavour" refers to type of quark/lepton
- Why are there 3 families?
- Processes where 3 generations interact differently would be a sign of NP

Standard Model of Elementary Particles

Lepton Flavour Universality

- Theory predicts that the different charged leptons the electron, muon and tau have identical electroweak interaction strengths
- Measurements have shown a wide range of particle decays are consistent with the lepton flavour universality (LFU) principle
- "lepton universality" is a principle taken for granted put under stress by recent measurements
- Very active field in light of flavour anomalies
 - Look for violation of LFU
 - LFU involving $e/\mu/\tau$ ratios

Recent measurements

 Recently there have been measurements related to lepton flavour (LF) that show tension with SM expectations

c(s)

H⁻, W′(Z′)

 $\tau^{-}(\mu^{-})$

 $\overline{\nu}_{\tau}(\mu^{+})$

- Anomalies:
 - For ex. $(g-2)_{\mu}$, and more
 - R_{K} and $R_{K^{*}}$ @LHCb

v.

 $\tau^{-}(\mu^{-})$

LQ

Flavour anomalies

Several measurements deviate from SM predictions

LFU: anomalies

arXiv:2103.11769

- Both in neutral ($b \rightarrow s\ell^+\ell^-$) and charged ($b \rightarrow$ $c\tau v$) decays

Anomaly: R_K measurement

arXiv:2103.11769

- Test of μ /e universality
- In SM, $B^+ \rightarrow K^+ee$ and $B^+ \rightarrow K^+\mu\mu$ should happen at the same rate
 - Rare process in SM
 - BSM effects can be large
 - Without errors, ratio is 1
 - Differences in detecting electrons and muons
- Common systematics cancel in double ratio
 - similar final state as reference

$$R_{K} = \frac{\frac{B(B^{+} \to K^{+} \mu^{+} \mu^{-})}{B(B^{+} \to K^{+} e^{+} e^{-})}}{\frac{B(B^{+} \to K^{+} J/\psi(\to \mu^{+} \mu^{-}))}{B(B^{+} \to K^{+} J/\psi(\to e^{+} e^{-}))}}$$

R_D measurement

arXiv:1708.08856, arXiv:1711.02505, arXiv:1910.05864

$$b \to c \tau \nu$$

Test of τ/μ (τ/e) universality

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell})}$$

 $\Rightarrow \tau$ decays rates provide a powerful test of LFU

Observable	Experiment	\mathbf{SM}
$\{R_D,R_{D^*}\}$	$ \begin{cases} 0.337(30), 0.298(14) \\ \rho = -0.42 \end{cases} [77] $	$\{0.299(3), 0.258(5)\}$ [78]
$\mathcal{B}(B^- \to \tau \bar{\nu})$	$1.09(24) \times 10^{-4}$ [79]	$0.812(54) \times 10^{-4}$ [80]

⇒ earlier measurements had a 4.1σ discrepancy. With the inclusion of new data, discrepancy comes down to 3.1σ M. Gallinaro - "Flavour anomalies and BSM searches" - Physics@LHC - May 2022

Angular distributions: B⁰ decays

- $B^0 \rightarrow K^* \mu \mu$ decay as FCNC process
 - highly suppressed in SM
 - small theoretical uncertainties
- Angular analysis to determine P_1 and P_5 parameters vs $\mu\mu$ invariant mass

BSM effects may modify decay properties

 $\mu^+\mu^-$ rest frame

θκ

rest frame

B⁰ rest frame

$B_s \rightarrow \mu \mu$: experimental measurements

- SM predicts B⁰→µµ decays are very rare
- Differences wrt expectations could indicate NP

Combination of ATLAS, CMS and LHCb results

- $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) = (2.69^{+0.37}_{-0.35}) \times 10^{-9}$
- 2.1σ away from the SM
- $\tau_{\mu^+\mu^-} = 1.91^{+0.37}_{-0.35} \text{ ps}$
- $\mathscr{B}(B^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-10}$ (95 % CL

Particle Flow event reconstruction

- Particle Flow (PF) combines information from all subdetectors to reconstruct particles produced in the collision
 - charged hadrons, neutral hadrons, photons, muons, electrons
 - use complementary info. from separate detectors to improve performance
 - tracks to improve calorimeter measurements
- From list of particles, can construct higher-level objects

-Jets, b-jets, taus, isolated leptons and photons, MET, etc.

Tau lepton identification

JINST 12(2017)10

From first identification of hadronic tau decays to precise measurements

• Particle Flow (PF) combines information from all subdetectors to reconstruct particles produced in the collision

M. Gallinaro - "Flavour anomalies and BSM searches" - Physics@LHC - May 2022

Tau lepton identification (cont.)

CMS-TAU-20-001

- Hadronic tau (τ_h) reconstruction and identification using a DNN
- Isolation cone and signal cone
 - narrow jet with few tracks
 - leptonic tau decays similar to prompt leptons (lepton p_T is softer)
 - inputs from all reconstructed particles near the tau candidate
- Validated with data
- The combined scale factor uncertainty amounts to $\approx 2\%$ (was 6%)

τ-jet axis

signal cone contribution

isolation contribution

τ-jet cone

W branching fractions

arXiv:2201.07861

• Precise measurement of the W boson BRs (electrons, muons, taus)

• Most precise determination of B(W \rightarrow Iv) from LEP has 2.6 σ deviation from LFU

$$R_{\tau/\ell} = \frac{2\mathcal{B}(W \to \tau \overline{\nu}_{\tau})}{\mathcal{B}(W \to e\overline{\nu}_{e}) + \mathcal{B}(W \to \mu \overline{\nu}_{\mu})} = 1.066 \pm 0.025$$

W branching fractions (cont.)

arXiv:2007.14040, arXiv:2201.07861

- Precise measurement of the W boson BRs (electrons, muons, taus)
 - -use events with WW and W+jets
 - exploit p_{T} to distinguish prompt leptons and leptons from τ decays
 - Maximum likelihood simultaneous fitting of templates to data in several categories
- Hadronic width of the W boson depends on several free parameters
- Extract V $_{cs}$ and $\alpha_{S}(m_{W}{}^{2})$

$$\frac{\mathcal{B}(W \to h)}{1 - \mathcal{B}(W \to h)} = \left(1 + \frac{\alpha_{S}(m_{W}^{2})}{\pi}\right) \sum_{\substack{i=(u,c), \\ j=(d,s,b)}} |V_{ij}| = 2.060 \pm 0.021$$

Data ····· Expected (pre-fit) MC stat, unc Diboson (non-WW post-fit syst. und $\mu\mu$: N_i ≥ 2, N_b ≥ 2, Z veto Events / GeV 10 10 1.50 d 1.25 d 1.25 J.00 sq0 0.75 0.50 50 100 150 200 $p_{T, subleading}^{r}$ [GeV] 35.9 fb⁻¹ (13 TeV) CMS Data Expected (preoost-fit syst. und e_{μ} : $N_{i} \ge 2$, $N_{i} \ge 2$ Events / GeV 10 10 10 1.50 . 1.25 X J.00 SqO 0.75

CMS

0.50

50 75 100 125 150 175 200 P⁽_{T, subleading}

35.9 fb⁻¹ (13 TeV)

W branching fractions (cont.)

arXiv:2007.14040, CMS-SMP-18-011

Resolving an old discrepancy from LEP

- Many more Ws than at LEP
- Extract V_{cs} and $\alpha_{S}(m_{W}^{2})$

	CMS	LEP
$\mathcal{B}(W \to e\overline{\nu}_e)$	$(10.83 \pm 0.01 \pm 0.10)\%$	$(10.71 \pm 0.14 \pm 0.07)~\%$
$\mathcal{B}(W \to \mu \overline{\nu}_{\mu})$	$(10.94\pm0.01\pm0.08)\%$	$(10.63 \pm 0.13 \pm 0.07)~\%$
$\mathcal{B}(W \to \tau \overline{\nu_{\tau}})$	$(10.77 \pm 0.05 \pm 0.21)\%$	$(11.38\pm0.17\pm0.11)~\%$
$\mathcal{B}(W \to h)$	$(67.46 \pm 0.04 \pm 0.28)\%$	—
with LU		
$\mathcal{B}(W \to \ell \overline{\nu})$	$(10.89 \pm 0.01 \pm 0.08)\%$	$(10.86 \pm 0.06 \pm 0.09)\%$
$\mathcal{B}(W \to h)$	$(67.32\pm0.02\pm0.23)\%$	$(67.41 \pm 0.18 \pm 0.20)\%$

Probing the Wtb vertex

JHEP 02(2020)191

Dileptons with taus

- cross section measurement including τs
- Includes only 3rd generation quarks/leptons
- Syst unc: tauld, fakes

Channel	Signature	BR
Dilepton(e/µ)	ee,μμ,eμ + 2 <i>b</i> -jets	4/81
Single lepton	e,μ + jets + 2 <i>b</i> -jets	24/81
All-hadronic	jets + 2 <i>b</i> -jets	36/81
Tau dilepton	eτ, μτ +2 <i>b</i> -jets	4/81
Tau+jets	τ + jets + 2 <i>b</i> -jets	12/81

- If top quark plays special role in EWK symmetry breaking, couplings to W may change
- Charged Higgs may alter coupling to W
- Search for final states with taus: charged Higgs

Charged Higgs: $H^+ \rightarrow \tau v$

arXiv:1903.04560

- MSSM: coupling to taus large for high tan β
- Production mechanism depends on H⁺ mass
 - Final states: τ +jets, ℓ + τ , ℓ + 0τ
 - 36 categories: incl. #jets, polarization R=p_T(tk)/p_T(tau)
- Cross section limits: 6pb to 5fb (80-3000 GeV)

Charged Higgs: H⁺→tb (cont.)

CMS-HIG-21-010

- Search for a H[±] decaying to a heavy neutral Higgs boson H and a W
- data consistent with SM expectations
- Set limits:
 - H[±] in the mass range 300-700GeV, assuming m_H=200 GeV
 - Cross-section limit from 0.08pb@300GeV to 0.013pb @700GeV

Charged Higgs: VBF

EPJC 81(2021)723

- Search for H⁺ bosons produced in VBF processes
- Use leptonic final states (e,µ)
- Combination of methods based on simulation and CRs in data used to estimate backgrounds

Set constraints on H[±] and H⁺⁺ production

Rare decays: $\tau \rightarrow 3\mu$

JHEP 01(2021)163

- LFV processes can occur via neutrino mixing
- Lepton flavour violating decay: $\tau \rightarrow 3\mu$
 - Very rare process, BR~10⁻¹⁰-10⁻⁸
 - World's best limit: 2.1x10⁻⁸ (Belle)
- Search performed in 2016 data
 - Tau leptons produced in W and HF hadron decays
 - 2/3 low-p_T muons trigger
 - Select 3µ candidates
 - BDT for signal (MC) & bkg (sidebands) separation
- No evidence for a $\tau \rightarrow 3\mu$ decay signal found
- Set upper limit:

$${\cal B}(au o 3\mu) < 8.0(6.9) imes 10^{-8}$$

Higgs boson couplings

JHEP 01(2021)148

Higgs boson coupling to fermions and quarks

obs.(exp.) significance: 3.0(2.5)σ

 \Rightarrow couplings in agreement w/SM

LFV in Higgs decays

arXiv:1911.10267, arXiv:2105.03007

- Some BSM models allow for LFV Higgs decays
- Search for $H \rightarrow e\tau$, $e\mu$, $\mu\tau$ final states
- Categories: N_{jet}, lepton kinematics
 N_{jet} to target ggH and VBF production
- Main background from DY, ttbar, WW

	Observed (expected)	Best fit branching	Yukawa coupling
	upper limits (%)	fractions (%)	constraints
${ m H} ightarrow \mu au$	< 0.15 (0.15)	0.00 ± 0.07	$< 1.11 (1.10) \times 10^{-3}$
$H \rightarrow e\tau$	<0.22 (0.16)	0.08 ± 0.08	$< 1.35(1.14) imes 10^{-3}$

\Rightarrow No significant deviation found

LFV decays - constraints

arXiv:1911.10267, arXiv:2105.03007

Limits set on off-diagonal Yukawa coupling terms

SUSY ?

arXiv:2106.14246, CMS-SUS-21-001, JHEP02(2020)015

- Several tests in SUSY related searches
- Study final states with leptons in final states
- Different couplings may enhance specific flavour production
- Search for chargino-neutralino production
- Flavour-democratic scenario: charginoneutralino mediated by LH-sleptons
- τ-enriched-scenario: chargino couples to RH sleptons, neutralino to LH sleptons

Stau lepton

 Early universe stau-neutralino coannihilation provides mechanism explaining DM relic density motivates stau as NLSP leading enhancement of τ leptons in final state

Top squark in ditau final state

 High-tanβ and higgsino-like scenario, the chargino mostly decays to τ leptons

RPV SUSY

CMS-SUS-21-001

- Direct production of τ slepton pairs
- Prompt and long-lived tau pairs

250

200

300

350

M. Gallinaro - "Flavour anomalies and BSM searches" - Physics@LHC - May 2022

450

m(τ) [GeV]

400

500

Leptoquarks

 \overline{LQ}

LQ

PLB 819(2020)136446

- Why are matter particles separated?
- LQs possible explanation to LU anomalies
- LQs as missing link btw leptons and quarks
- LQs favor couplings to heavy fermions

M. Gallinaro - "Flavour anomalies and BSM searches" - Physics@LHC - May 2022

b

137 fb⁻¹ (13 TeV)

LQ

600001

Long-lived heavy neutral leptons

arXiv:2201.05578, CMS-EXO-21-003

- Neutrino masses are small wrt SM fermions
 - HNL produced through mixing with SM neutrinos
- Stable HNLs could be DM candidates
 - Produced in mixing of SM (e, μ, τ) neutrinos
- HNL may be long-lived
 - for small values of HNL mass (<20 GeV) and HNL-SM neutrino mixing parameter
- Search for 3-lepton events (e, μ)
 - 2 with displaced vertex+1 prompt

Dirac vs Majorana particles

Heavy resonances & QBHs

 λ'_{311}

d

 $\tilde{\nu}_{\tau}$

 \overline{q}_{u}

qu

 λ_{323}

 μ

CMS-EXO-19-014

- Search for resonances and quantum black holes
 - Decays: eµ, eτ, μτ
 - Different models include RPV SUSY, Z', non-resonant QBHs, etc.

 μ^+

QBH

Summary

- Lepton Flavour Universality principle can be probed at LHC
- Several tests performed: rare decays, W boson, Top quark, Higgs boson, BSM searches, etc
- Current results indicate tension of LFU with SM

- Improvements towards precision measurements
- Plenty of data: 137 fb⁻¹ \rightarrow 300 fb⁻¹ \rightarrow 3000 fb⁻¹
- LHC Run3 is about to start soon (2022+)
- HL-LHC a few years away (2029+) with improved detectors

Simplicity if the essence of universality – M. Gandhi

B-physics parked data sample

- As luminosity drops, turn on various seeds to keep L1 rate constant, increase HLT rate towards end of fill, tune thresholds
- Stored ~10¹⁰ Bs on disk in 2018
- Trigger strategy optimized to maximize # of B hadrons
- Significantly enhances B-physics potential in CMS and be competitive in several measurements not possible before
- Unique opportunity to test several flavour anomalies

