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Ly — 18:30 Higgs Physics 1

Introduction

Reminder of some shortcomings of the SM: masses, WW scattering.

The Higgs mechanism. Production and decay of the Higgs boson at colliders: LEP, Tevatron and LHC.
Previous searches at LEP and the Tevatron.

Speakers: Ricardo Goncalo, Ricardo Gongalo (U. Coir

g Combined LHC mass measurement

WEDNESDAY, 6 APRIL

ATLAS and CMS
LHC Run 1
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Discovery of the Higgs boson in the different final states:
Algorithms, challenges, tools,
combination of results
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Speakers: Pedro Silva (LIP) , Pedro Vieira De Castro Ferreira Da Silva (C
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Case-study of the H->bb search, H->bb observation
Algorithms, challenges, tools
Higgs measurements with H->bb
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Speakers: Rute Costa Batalha Pedro | Laboratorio de Instrumentacao sica Experin al de Pz s (PT)), Rute Pedro (1

WEDNESDAY, 13 APRIL

— 18:30 Higgs Physics 4

- Search for new physics in the Higgs sector.

- The Higgs boson and processes beyond the SM.

- Extensions of the SM, minimal and non-minimal extensions.

- High mass searches.

- MSSM Higgs searches: neutral, charged.

- Light pseudoscalar, resonant and non-resonant Higgs pair production.

Speaker: Michele Gallinaro (L
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Outlook

 What is the Higgs boson
and what is it good for?

e How did we find it?
* Why do we care?
e And what comes next?
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Introduction

The Standard Model particles and
interactions, and some theory to
set the scene...



What is everything made of???
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Fundamental Forces

’
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Fundamental

forces

* Electromagnetic:

— Carried by photons
— Acts on electrical charge

 Weak:
— Carried by:

* W* (charged current)
» 79 (neutral current)

— Acts on weak isospin

* Strong:

— Carried by 8 gluons

— Acts on colour
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Lagrangians, symmetries and all that

B

382 — 1935) ‘} :‘

Joseph—Lg&is Lagrange (1736-1813)
LN




Lagrangians in classical mechanics

The equations of motion of a system are derived from a scalar
Lagrangian function of generalized coordinates and velocities (time
derivatives of the coordinates)

L(g,q) =T -V

From minimizing the action S, get the Euler-Lagrange equations:

S = /dtL(Qiaqi) d <8L> oL _ 0

dt 8(]7, (9%‘
For a point particle in a potential U, with g, = x, y, z

| d oU oU
L=-mg¢* —Ul(g i = —
514 (q:) = —(mg;) + o0 = md;




Symmetries and conservation laws

Noether’s theorem:

If a system has a continuous symmetry property, then there are
corresponding quantities whose values are conserved in time.

Simplest case:

Coordinates not explicitly appearing in the Lagrangian =>
Lagrangian invariant over a transformation of these coordinates

Example: point mass m orbiting in the field of a fixed mass M

L(r,¢,7'“,g§) T -V = —m’r2—|— mngbZ L GMm

r

Since the lagrangian doesn’t depend explicitly on ¢ (symmetry with
respect to rotations in space), the Euler-Lagrange equation gives

gt(gg) 0 2 o L —mr2p=J

Where the angular momentum J is a constant of motion!
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Let’s go to quantum fields...

| YT

Schrodinger
(1887 - 1961)



Now in quantum field theory...

Imagine space as an infinite continuum of balls and springs,
where each ball is connected to its neighbours by elastic
bands. Particles are perturbations of this field

o= 2= 2= 2= 2= B DA B -
O(XY) /ot o o 2 2 B B -
! g?efg%fe?e??c =
€P€P§?§§€§€P€ -
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Generalized coordinates are now fields (dislocation of each spring)

¢ — ¢i(x*)

In a relativistic theory we must treat space and time coordinates on
an equal footing, so the derivatives in the classical equations are now

5 6 o 0
GV = 0, = = (57 552 g 93)

In place of a Lagrangian we have a Lagrangian density (we call it
Lagrangian anyway, just to be confusing)

L(q;, Cii%z) > L(¢i, 0u05)  with: L = fﬁdgw

The new Euler-Lagrange equation now becomes

oL oL __
Oula@,a7) ~ 96, =0




 Example Lagrangians and equations of motion:
e Klein-Gordon Lagrangian for spin O particles (scalars):
1 1

L = 5(0,0)(0"¢) — 5m?¢” 0p0td+m?¢p =0

* Dirac Lagrangian for spin % particles (fermions):

Lp = ipy" b — mapep i 8,1 —map = 0
* Proca Lagrangian for spin 1 (vector) particles:
1 1
T (Al AV QU AN . T a2 AV
Lp = 7—(0"A" — 0" A")(9,A, — 0,A,) + g—m? AV A,

0, (0" A” — ¥ AM) + m2A” =0

* Important:
Mass terms in Lagrangian are quadratic in the fields



Global gauge invariance

Take the Dirac Lagrangian for a spinor field y representing a spin-2
particle, for example an electron:

L = ihzﬁv“(r)’ﬂw — map

It is invariant under a global U(1) phase transformation like:

P(z) = ¢’ (2) = e"Xip()

Where y is a constant
L= e "X X (ihipyH D hp — mapyp) = L

Note: gauge invariance of the Dirac equation can be demonstrated to
lead to conservation of probability current j#

i* = (p, ) = uyty



Local gauge invariance and interactions

If ¥ = x (x) then we get extra terms in the Lagrangian:

£ = i YOy + ig(ux)e' ] — meT e Ny
= L — gy (0¥

But we can now make the Lagrangian invariant by adding an
interaction term with a new gauge field A, which transforms as:

A, — Al = A, — 9,

We get: L = Z'@Z’y“(auw — m%@@b — QQZ’YMAM@D
Note:

1. The new gauge field Aﬂ is the photon in QED
2. The mass of the fermion is the coefficient of the term ony
3. Thereisnotermin A”A” (the photon has zero mass)



Original sphere

04.04.22 R. Gongalo - Physics at the LHC 18




Weak Neutral Currents and
Electroweak Unification

ZEUS

O ZEUS e*p NC 99-00

o ZEUS e p NC 98-99

- SMe*p NC (CTEQ6D)
— SMep NC (CTEQ6D)

= ZEUS e*p CC 99-00

e ZEUS ep CC 98-99

- SMe*p CC (CTEQ6D)
— SMep CC (CTEQ6D)

Q% (GeV?)
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Electroweak Unification

@ Weak CC interactions explained by W= boson exchange

@ W™ bosons are charged, thus they couple to the v

30

s
Consider e et — WTW: 2 diagrams =
(+interference) 201
e’ W+ et W+

10-
Ve
Y

e~ W=  e™ W= 02
@ Cross-section diverges at high energy
@ Divergence cured by introducing Z boson
@ Extra diagram for e e™ — W W~
@ Idea only works if v, W=, Z couplings are related

= Electroweak Unification
04.04.22 R. Gongalo - Physics at the LHC

M YFSWW/RacoonWW
....nho ZWW vertex (Gentle)
only v, exchange (Gentle)

160

180

200
Vs (GeV)
W+

20



Sheldon Glashow’s
“stumbling block”

e There are hints that EM
and weak interactions
have a common origin

— Similar gauge structure
— W= couples to charge
e But there are obvious
differences:

— Different masses of W#*,
Z and photon

— Structure of the vertex is
different

PARTIAL-SYMMETRIES OF WEAK INTERACTIONS

SHELDON L. GLASHOW *t
Institute for Theovetical Physics, Univeysity of Copenhagen, Copenhagen, Denmark

Received 9 September 1960

Abstract: Weak and electromagnetic interactions of the leptons are examined under the hypoth-
esis that the weak interactions are mediated by vector bosons. With only an isotopic triplet
of leptons coupled to a triplet of vector bosons (two charged decay-intermediaries and the
photon) the theory possesses no partial-symmetries. Such symmetries may be established if
additional vector bosons or additional leptons are introduced. Since the latter possibility
yields a theory disagreeing with experiment, the simplest partially-symmetric model repro-
ducing the observed electromagnetic and weak interactions of leptons requires the existence
of at least four vector-boson fields (including the photon). Corresponding partially-conserved
quantities suggest leptonic analogues to the conserved quantities associated with strong inter-
actions: strangeness and isobaric spin.

1. Introduction

At first sight there may be little or no similarity between electromagnetic
effects and the phenomena associated with weak interactions. Yet certain

remarkable parallels emerge with the supposition that the weak interactions
are mediated by unstable bosons. Both interactions are universal, for only a
single coupling constant suffices to describe a wide class of phenomena: both
interactions are generated by vectorial Yukawa couplings of spin-one fields 11,
Schwinger first suggested the existence of an “isotopic™ triplet of vector fields
whose universal couplings would generate both the weak interactions and
electromagnetism — the two oppositely charged fields mediate weak interac-
tions and the neutral field is light 2). A certain ambiguity beclouds the self-
interactions among the three vector bosons; these can equivalently be inter-
preted as weak or electromagnetic couplings. The more recent accumulation of
experimental evidence supporting the AI = } rule characterizing the non-
leptonic decay modes of strange particles indicates a need for at least one
additional neutral intermediary ®).

The mass of the charged itermediaries must be greater than the K-meson
mass, but the photon mass is zero — surely thisis the principal stumbling block
in any pursuit of the analogy between hypothetical vector mesons and photons.
It is a stumbling block we must overlook. To say that the decay intermediaries

04.04.22 R. Gongalo - Physics at the LHC 21




Electroweak Gauge Theory

@ Postulate invariance under a gauge transformation like:

w%w 1ga/\rt)w

an “SU(2)" transformation (o are 2x2 matrices).
Operates on the state of “weak isospin” —a “rotation” of the isospin state.

Invariance under SU(2) transformations = three massless gauge bosons
(Wi, W, Ws) whose couplings are well specified.

@ They also have self-couplings.

But this doesn't quite work...
Predicts W and Z have the same couplings — not seen experimentally!

04.04.22 R. Gongalo - Physics at the LHC 22



Electroweak Gauge Theory

The solution...

Unify QED and the weak force = electroweak model

“SU(2)xU(1)" transformation
U(1) operates on the “weak hypercharge” Y = 2(Q — k)
SU(2) operates on the state of “weak isospin, I”

Invariance under SU(2)xU(1) transformations = four massless gauge
bosons W™, W—, Ws, B

The two neutral bosons W3 and B then mix to produce the physical
bosons Z and ~y

Photon properties must be the same as QED = predictions of the
couplings of the Z in terms of those of the W and ~

Still need to account for the masses of the W and Z. This is the job of the
Higgs mechanism (later).

04.04.22 R. Gongalo - Physics at the LHC 23



The GWS Model

h _ The Glashow, Weinberg and Salam model
A treats EM and weak interactions as

different manifestations of a single unified
electroweak force (Nobel Prize 1979)

Start with 4 massless bosons W™, W5, W~ and B. The neutral bosons mix to
give physical bosons (the particles we see), i.e. the W*, Z, and 7.

W+ W+
W5 - B = / Y
W W

Physical fields: W™, Z, W~ and A (photon).
/ = W3COS@W — Bsin QW
A= WssinOy + BcosOy  Ow Weak Mixing Angle

W=, Z "acquire” mass via the Higgs mechanism.

04.04.22 R. Gongalo - Physics at the LHC 24



The GWS Model

The beauty of the GWS model is that it makes exact predictions of the W=
and Z masses and of their couplings with only 3 free parameters.

Couplings given by agy and 0y

g : I < 9z :
o W+ 7
,

e e e gw

OEM — — 8B~ € EW — 87 =

A sin Oy sinfyw cosOy  cosbOw

Masses also given by G- and 0y

From Fermi theory 1/2
G g2, - . - \/§e2 S myy
V2 8my,  8mYsin?fy 8Grsin’ Oy cos Oy

If we know agpy, Gr, sin Oy (from experiment), everything else is defined.

04.04.22 R. Gongalo - Physics at the LHC 25



Evidence for the GWS model

@ Discovery of Neutral Currents (1973) z 7y
The process 7,6~ — 1,e~ was observed. I
Only possible Feynman diagram (no W= diagram). 4
Indirect evidence for Z. ) )

Gargamelle Bubble
Chamber at CERN

04.04.22 R. Gongalo - Physics at the LHC 26
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Evidence for the GWS model

Discovery of Neutral Currents (1973) z 7y
The process ,e~ — e~ was observed.
Only possible Feynman diagram (no W= diagram).
Indirect evidence for Z.

Direct Observation of W* and Z (1983)
First direct observation in pp collisions at /s = 540 GéV via decays into
leptons  pp — W= + X pp— Z+ X

— eV, T, — ete, "

UA1 Experiment at CERN AR Uil
Used Super Proton Synchrotron A AR

(now part of LHC!)

04.04.22 R. Gongalo - Physics at the LHC 29
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Evidence for the GWS model

Discovery of Neutral Currents (1973) z Zu

The process v,e™ — 1,6~ was observed.
Only possible Feynman diagram (no W= diagram). z
Indirect evidence for Z.

Direct Observation of W* and Z (1983)
First direct observation in pp collisions at /s = 540 GéV via decays into
leptons  pp — W* + X pp— Z+ X

— eF e, it — ete ,uu”

Precision Measurements of the Standard Model (1989-2000)
LEP e"e™ collider provided many precision measurements of the Standard
Model.

Wide variety of different processes consistent with GWS model predictions
and measure same value of
sin” 0y = 0.23113 + 0.00015 Ow ~ 29°

04.04.22 R. Gongalo - Physics at the LHC 31
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Strength of fundamental interactions

gl W= 4
_ (& g_ gw @i,l/g "gi<
4 9
Ei,ye
0 s Vy
q —D—f
gl W= 24
Qe : q gwVorm : 9z
q u,c,t q

q d,s,b
q
2
(07 62 s = & g2
47 cos Oy

g=u,d, s ,c bt

+ antiparticles
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Now for the problems...




Problem 1: Mass of elementary particles and gauge bosons
What if we add a photon mass term to the QED Lagrangian?

LQED — &(iw‘ﬁu — me)w — 6?%’7“?7014“ — iFlﬂ/FW/ + %myAuA“

To keep the Lagrangian gauge invariant (against a local U(1) local
phase transformation) the photon field transforms as:

]
But the 4# mass term breaks the Lagrangian invariance:

sy Ay AR — 2my (A, — O(AF — OFx) # 2my A, AF

2

For the SU(2), gauge symmetry transformations of the weak
interaction the fermion mass term m_yy also breaks invariance!



It should not work...
A

MASS

R. Gongalo - Physics at the LHC
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Problem 2:
. J'C.'Ro.rn.éf).[.S].

Longitudinal gauge-boson scattering 10° ——————rr

In the absence of the Higgs, some _
processes have cross sections that grow  10° }
with the centre of mass energy of the
collision... i.e. breaks unitarity! 10° |

The Higgs regulates the cross section %

through negative interference 10° |

Bottom line: the SM (without the Higgs
mechanism) results in wrong ,
calculations and breaks down for "
massive particles Ecm (GeV)

W W= W~ W~ W- 4%
v, Z

w+ w+ Wt wt Wt W+

Feynman diagrams contributing to longitudinal WW scattering



The Higgs Mechanism

o W
c(1528 - 011

Ah

» Faois Englert
Peter Higgs (b. 1929) (b. 1932)




* Introduce a SU(2) doublet of spin-0 complex fields
¢ _ ¢+ _ ¢1 + Z¢2
¢° ¢3 + 194

* New Lagrangian term: L= ((%gb) (8M¢) )
* With a potential V(¢) 2¢T¢ ™ )‘(ng )

N

Z
* For 2>0, u>>0 the potential has a

minimum at the origin
* For 2>0, u><0 the potential has an
infinite number of minima at:

<>

2
o= %=\ %

b ' dim

The choice of vacuum (lowest 2
energy state of the field) breaks the symmetry of the Lagrangian

04.04. R. Gongalo - Physics at the LHC
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EWK Symmetry Breaking in Pictures
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Higgs Properties
Mass  TMp — \/ﬁv

Spin: 1 degree of freedom =>0

_ h h v
Couplings: /’ )
To gauge bosons L I "
M2 M2 AN ,’/
% % .
EnvV < =~ 8hhVV < o " Y
Yukawa couplings to fermions R N
8hsf > 5
107
o S _
Enff = 7
. v h h
Self-couplings o
M]% Mf% h=====- My \:(\/ 8hhhh < Aiz'%
8hhh °< —,~ 8hhhh °< 2 BV =5 v



ATLAS Preliminary 2011 + 2012 Data

—— Obs. \s=7TeV: |Ldt=4.6-4.8 fb"
---- Exp.

300 400 500 600
m, [GeV]




A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS **
CERN, Geneva

Received 7 November 1975

We should perhaps finish with an apology and a caution. We

apologize to experimentalists for having no idea what is the mass of the

5)54)

Higgs boson, unlike the case with charm and for not being sure of

its couplings to other particles, except that they are probably all very

small, For these reasons we do not want to encourage big experimental
searches for the Higgs boson, but we do feel that people performing expe-

riments vulnerable to the Higgs boson should know how it may turn up.

04.04.22 R. Gongalo - Physics at the LHC 45
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Low-mass searches at LEP

The decay branching ratios depend only on m,;:

O my <2m,.:: H— yy + large lifetime; O my > 2m, up to 1000 GeV/c?:
Y
H . o li==
_______ W §
oh
Y E
G
Qm, <2m;: H — e‘e dominates; PRI
' m 3

Qm,<2m: H — uu dominates;

Qm,<3-46GeV: H— gg dominates;

(00000 g 10 42
H top 1On?, wtr, KK, ” |
nm, ... etc

"00000 g 10 3 eHll W

Qm, <2m,: H— tr and cc dominate; 10
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Higher-mass Higgs production at LEP

. WW-Fusion
e ﬁ ----------------- V
.
-
W
‘Q
Higgs » H
Strahlung ."
oW
*’
o
e e - LY vV
- 2 - -
Higgsstrahlung e WW-Fusion
>l :—
g E — 189 GeV
— 200 GeV
0k — 208 GeV
3 ]
10 \
] . 10 -3 \
110 120 80 90 100 110 120
m,, (GeV)
04.04.22

R. Gongalo - Physics at the LHC 48



Summary of all Higgs
candidates found at LEP

Invariant mass of all candidates

In total |7 candidates selected

I5.8 background events expected

Expectation for mp=115 GeV

8.4 events

Corresponding excess was not observed

Final verdict from LEP

mup>114.4 GeV @ 95% CL

.\k

04.04.22

Events

Events

Events

20

10
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Vs = 200-210 GeV

<+ LEP loose
1 background

mmm hZ Signal
(m =115 GeV)

L Ve = 200-210 GeV
3

-

-+ LEP medium
) background

mmm hZ Signal
(m, =115 GeV)

“l - 108 GaV

Fie iy

T T

L Zumn s s o

RN

Vs = 200-210 GeV

B e s o

~+ LEP tight
1 background

mmm bZ Signal
(m, =115 GeV)

= 108 GaV

gl i

—rrTrTrTrrrry e eT

0 20 40 60

$0 100 120
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- Sea rclggls at the Tevatron.

Proton-dyti-proton collider at s'/2=1.96 TeV
First superegfiducting accelerator

Shutdown: 30 September 2011
Almost 10 fb! of data for analysts

»
o — —
o r————




Higgs production at the Tevatron

Vector

q .
Wz i boson fusion
- HO
q - HO  §
Associated (fermion annihilation and
| production q vector boson scattering)
\\* — _-
. . .
SM Higgs production
- Only """" prrrrTT | | I |
Gluon fusion available at 103L TeVII -

hadron colliders o (]
g t t HO
9 t
t

HO

@
1

gg,qq — tth

TeVALHC Higgs working group

l PR S ST ST T U T U VAT SN YT U NN U VAT S VAT S WY S T U WY ST W WU s e WY

| ti-fusion 100 120 140 160 180

Ll

200

m, [GeV]

ua.uq.zZz
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The final stand of the Tevatron

combined CDF /DO thresholds

S
N

« By the end of its lifetime, the |30 o
Tevatron had very sophisticated
analyses of a huge number of

channels

2l

10 fbo™

Tevatron: 1
Max. expectation

12 fb™!
95% CL Imit
30 evidence

(@]
©
ey

* By that time the LHC was collecting .~ —— 50 discovery ]
data and analysing it very fast © 80 100 120 140 160 180 200
Higgs mass (GeV/c?)

integrated luminosity/expt. (fb™")
o)

—_
o

 The CDF and DO experiments
obtained an excess of around 3
standard deviations in the mass
range 115<M_;<140 GeV

[ — Observed Tevatron Run II, L, < 10 fb™
| --- Expected w/o Higgs SM Higgs combination
- [ Expected £ 1 s.d.
" [1 Expected £ 2 s.d.

- +== Expected if m, =125 GeV/c?

95% C.L. Limit/SM

* Not enough to claim discovery, but
consistent with the LHC results

L | L L L 1 L 1 L | L L L 1 L L L | L L 1

100 120 140 160 180 200
m,, (GeV/c?)
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LEP and Tevatron: the Blue Band Plot

Decades of searches in
several experiments...

By July 2010:

— LEP+Tevatron+SLD limits N

— Higgs excluded for
m,<114.4 GeV at 95% CL

— Plus between 158 and
175 GeV

<

6 July 2010 M, = 198 GeV
(5) _
5 . Aoy o = |
2 i —0.02758£0.00035

. , - 0.02749£0.00012
4 % i «ee incl. low Q° data —
3 - —]
2 - —
1 - —]
0 Excluded . /" Preliminary

] 1 ] | 'I ]
30 100 300

S0-0T0C-d3-Hd-NY3D
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ATLAS

3000 colaboradores

175 institutos de 38 paises
L=44m,J=25m, 7000t

04.04.22

I [

the LHC

(o \V/ 1

3800 colaboradores

199 institutos de 43 paises
L=22m,J=15m, 14000t
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| | | | | | | |
Om m m m 4m 5m 6m m
Key:
Muon

Electron

== Charged Hadron (e.g. Pion)

- = = - Neutral Hadron (e.g. Neutron)
""" Photon

Silicon
Tracker

PR} Electromagnetic
g )l“ Calorimeter

Hadron
Calorimeter

Superconducting
Solenoid

Transverse slice
through CMS

04.04.22 R. Gongalo - Physics at the LHC

Iron return yoke interspersed
with Muon chambers

D . Bamey, CERN, Febricuy 2008
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Muon Spectrometer: |n| < 2.7 EM calorimeter: |n| <2.5(3.2)
Air-core toroid + gas-based muon chambers Pb-LAr accordion sampling
o/p;=2% @ 50GeV to 10% @ 1TeV (ID+MS) o/E = 10%/VE ® 0.7%

Hadronic calorimeter:
) Solenoid: B=2T Fe/scintillator / Cu/W-LAr
Inner Tracker: |n| <25 O'/Ejet= 50%/VE @ 3%
Si pixels/strips and Trans. Rad. Det.

o/p; = 0.05% p; (GeV) @ 1%
04.04.22 R. GONgalo - Physics at the LHC




CMS Experiment at the LHC, CERN
Data recorded: 2012-May-13 20:08:14 621490 GMT ’

Run/Event: 194108 / 564224000

“ .\

» . P
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Higgs @ the LHC

* Many different production and decay mechanisms
— Span 3 orders of magnitude in cross section and branching ratio

— Some very clean decays with low BR (yy, 4l)

— Other very difficult with higher rates (bb, WW, T,...)
* Access Higgs properties through combination of different

channels
g ; q
g g fusion : t H° WW, ZZ fusion : HC
t
g X ¢
! +\
q
t
9 t q W,z
ttfusion : H° W Z
t
g
_ - HO
t g W, Z bremsstrahlung
04.04.22
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Higgs @ the LHC

* Many different production and decay mechanisms
— Span 3 orders of magnitude in cross section and branching ratio
— Some very clean decays with low BR (yy, 4l)
— Other very difficult with higher rates (bb, WW, t7,...)

* Access Higgs properties through combination of different
channels

\VVVVVVVVVVN
t v Vv
H H
______ t — — — —— — ——
t y v
AVAVAVAVAVAVAVAVAVAVAV

b, 7, u
R. Gongalo - Physics at the LHC
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It takes time to get it right

1 Ilfllwlluglulgyi

v v 2 M : § 20

=== ATLAS p-value

. muux CMS p-value
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EPS-HEP 2011 conference [6]

04.04.22 R. Gongalo - Physics at the LHC 61



2012: Descoberta do bosao de Higgs: H->yy

T l T T T T l T T T T I T T T T l T T T T l T T T T

> r ) -
o - /= 7| TeV || Ldt=000"| MarR5, 2011 =
P 31T —
E | —
GJ - —]
Lﬁ - ]
2.517 ATLAS Preliminary —
— H—yy channel -
2T —
1.5 —
1 29| (294 | (29 99 9¢ |0 2 dEdREINRE LS *9 |
0.5 || [TTTT 2
E 200 [ T T e e e ]
=
g 0
-200 I N N N TP ]
100 110 120 130 140 150 160
M., [GeV]
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Discovery channels

Discovery was made in ATLAS and CMS with about 5 fb! of 7 TeV data and 20
fb! of 8 TeV data per experiment; several channels combined
h—~v:h—Z2Z2* > 40;h > WW* h = 17777 h — bb

This means about 400 000 Higgs bosons produced in about 8 000 000 000 000
000 (8x10*°) proton collisions

— Only about 4000 events with Higgs bosons contributed to the discovery

> L
> oo T 3 b preEEr ATLAS
C o F "
Q) [ {s=7TeV,L=5.1f"'(CIc) ~— S+BFit ] a f m,=124.3 GeV (fit) H—ZZ"—4l ’
 ts=riev,L=517LIl) Bika Eit Component ] € 35 . \s=7TeV |Ldt=4.6f
05000 fs=8TeV, L =19.6 " (CIC) g ponent — © "7 [ Background Z, 7 | 4
- by ' [ Jsto ) Y 4 Zeicts. i \s=8TeV JLdt=20.7fb
. C ground Z+jets, tt
; 3 =20 ] 30:_ 4 Syst.Unc.
E4OOO g
g | :
Wao00F 2001
8 i C |
S : 15E-
.8BP000 r
g C e
- 10
m1000 - = - l
+ B 5F v
L r ]
\ O 1 1 I 1 1 1 1 | 1 1 L L | 1 1 L 1 | 1 1 1 1 | 1 1 0 0 | | | | |
w 110 120 130 140 150 100 150 200 250
m,, (GeV) m,, [GeV]
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A Descoberta do bosao de Higgs

In praise of charter schools

Volume 712, Issue 3, 6 June 2012 ISSN 0370-2693
: Tlle Britain's banking scandal spreads
E cCoOnom i S t Volkswagen overtakes the rest
A power struggle at the Vatican
LY TR 135 2012 Ecenoenist com When Lonesome George met Nora
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Vs=7TeV,L=511"
\s=8TeV,L=531"
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Two quotations from the experimental papers presented in this publication:

... The search for the Higgs boson, the only elementary particle in the Standard Model that has not yet been observed, is one
of the highlights of the Large Hadron Collider physics program.”

- ATLAS Collaboration

... The decay to two photons indicates that the new particle is a boson with spin different from one. The results presented
here are consistent, ... with expectations for a standard model Higgs boson."
- CMS Collaboration

(
< ‘49° )

v

2011-12

— Observed  [EE Expected Signal = 10

Vs=7-8 TeV
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What now?!
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Probing A 125 GeV Higgs
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Signal strength measurements

ATLAS and CMS ATLAS and CMS Preliminary - ATLAS
LHC Run 1 -o- ATLAS+CMS LHC Run 1 —CMS
_ : | - ATLAS+CMS
Kz — 3 5
1 ' —_ 1(7

| : H’YY _;_._ll
Kw = = B T
K, S —— uzz e

| : — i *
he. | —- B 5

| . MWW ——
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JE———— — ,
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Higgs boson mass

Mass: around 125GeV
Was the only unknown
SM parameter ©

For a while, different mass
values were being
measured in ATLAS and
CMS, and in different
channels

Numbers evolved with
accumulated statistics

Phys Rev. Lett. 114, 191803

Signal strength (1)
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0.5

- LHC Run 1
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Higgs boson mass

e Mass measurement from

— H>7Z*>4l
— H> Y, ATLAS and CMS  —+ Total [ | Stat. = Syst

7 TeV, 8 TeV and 13 TeV Tot. Stat. Syst.
°
PI’ECISlon at the permllle ATLAS H —yy Run1 5+ 126.02 = 0.51 (= 0.43 = 0.27) GeV
level achieved CMS H —yyRuni 124.70 = 0.34 (= 0.31 = 0.15) GeV

ATLAS H — 41 Run 1 124.51 = 0.52 (+ 0.52 = 0.04) GeV

CMS H — 4lRun 1 125.59 + 0.45 (= 0.42 = 0.17) GeV

ATLAS-CMS yy Run 1

125.07 = 0.29 (= 0.25 = 0.14) GeV

ATLAS-CMS 41 Run 1 125.15 + 0.40 (= 0.37 = 0.15) GeV

ATLAS-CMS Comb. Run 1 125.09 = 0.24 (= 0.21 = 0.15) GeV

ATLAS H —yy Run 2 125.11 = 0.42 (= 0.21 = 0.36) GeV
ATLAS H — 4l Run 2 124.88 = 0.37 (= 0.37 = 0.05) GeV

CMS H —4lRun2 125.26 + 0.21 (= 0.20 = 0.08) GeV

| I | I | — | — I | — I 11 | I 1

118 120 122 124 126 128 130 132
m,, GeV
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M,, [GeV]

Exploring the electroweak scale

* Precision measurements of m,,, m,, m, are stringent tests of

the SM at the EW

scale

— E.g. excluding measured m,, global EW fit gives m; =90 * 21 GeV

(1.7 o tension) driven in part by m

arXiv:1803.0185
B T T T I T T T T | T T T T | T : T T T I T T T T | I j J;
—  68% and 95% CL contours ;j m, comb. £ fo _
- B my = 172.47 GeV -
80.5 — Fit w/o M, and m measurements o G = 0.46 GeV ) —]
- Fitw/o M,,, m and M, measurements — 0=046 ©0.50,,, GV d
N Direct M,, and m, measurements ] ]
80.45 — —
~ M, comb. + 16 \ MI‘ s 3
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C N : ]
— o° -
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arXiv:1808.01191 [hep-ex]/HIGG-2017-06

Higgs boson width

SM Higgs width I',~4.1 MeV

Too small to be measured

directly

Best direct limit from CMS:
* ,<1.1GeV @ 95% CL

Off-shell Higgs production
sensitive(*) to I,

2 2
Hoff —shell _ Fg off —shell'"Z off —shell 'y
. = 2 2 S M
Hon—shell H’g,on—shell'K’Z,on—shell FH

ATLAS measurement:

pp2>H2>ZZ->4l and ZZ>2I2v
m(H) > 2 m(2)
36.1 fb! of 13 TeV data

Observed (expected) limit:
* [,<14.4(15.2) MeV

Events / 20 GeV

Events / SM

10°
10°
10
10°

—
T

R L I I I I U I I I~
ATLAS ® Data E
{s=13TeV, 36.1 fb' ----- 9g+VBF—(H*>)ZZ(u_ _=5)-=
H* > ZZ - 4l [ gg+VBF—(H*=)ZZ(SM =
B qq-2Z =

I Other backgrounds 3

Uncertainty =

=

300 400 500 600 700 800 900 100011001200
my, [GeV]

(*) Assume interference term with gg — ZZ proportional to Kg,off-shell * KZ, off-shell
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Measuring the Higgs Spin

* Polar angle © in the rest

frame of the diphoton systen

(Collins-Soper frame)
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Casting a wider net
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Additional Higgs bosons?

Peter Higgs Peter Higgs Peter Higgs eter Higgs i Peter Higgs

Diphoton rate ' —~— - Dlphoto_n rate — Run II
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ATLAS-CONF-2018-039

Higgs + Dark Matter

Used 79.8 fb! of 13 TeV data
— High E;™ss (>150GeV) and b-
tagging to suppress backgrounds

— Reconstruct b-jets as 2 small jets
or merged variable-radius (VR)
track jets

Signal benchmark: Type-ll 2HDM

o 1000 —— 5 1 T T ]

’_ ) % - ATLAS Preliminar — Observed 95% CL 3

+ U(l)zl Symmetry (Z 2HDM % 9005_ \/§=13TeVI, 7I9.8¥b71 -_--: E)gl)_e:)’:eg(? 192:/;8)‘:._ (+10)—
= 800~ h(bb) + EmMiss: 7+2HDM simplified model =

. . - tang=1,gz=0.8, m =100 GeV, my = my: = 300 GeV -
Main backgrounds: tt, W/Z+jets 7001 E
600— T TN -

500/

Excluded region in m, —m, plane |

| | 1 1 1 1 | 1 1 1 1 ‘ 1 1 I 1 | 1 1 1 1 \ | N 1 l 1 -
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mz [GeV]



arXiv:1808.00336 [hep-ex]; ATLAS-CONF-2018-043

Triple Higgs coupling

The triple Higgs coupling A, can be
probed through di-Higgs production
Very suppressed in SM!

— Negative interference between LO
diagrams

— Cross section 1500x less than ggF
Wide range of decay BR and channel
purity
bbtt analysis:

— Used 36 fb! of 13 TeV data

— Final state BR(bbtt)=7%

— Non-Resonant 95% CL limit:
K < 12.7 observed (14.8 expexcted)

Combination: at =10 x SM sensitivity
— with 3% of the HL-LHC luminosity
analyzed

Di-Higgs combination plot here

04.04.22 R. Gongalo -
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Pole top mass M, in GeV

] A b)it of fun...

180 [ v T "‘ 167 ! _— ’,'1,010'
—— - .- L 3 V() NOT IN SCALE
Instability "~~~ ==~ .-~ Meta-stability - -~ "] eff
175 :"‘ . -, , ‘ ’ > : Instability
= e /7 “
1239
mor
10 » ¢
Stability
165 ‘ l ‘ l : ] l ‘ l : ] ' ] ' ) l ' ] ' : Vacuum Decay
115 120 125 130 135
Higgs mass M, in GeV RG-improved potential
What if..l

— At higher orders, Higgs potential doesn’t have to be stable
— Depending on m, and m,, second minimum can be lower than EW minimum =
tunneling between EW vacuum and true vacuum?!
“For a narrow band of values of the top quark and Higgs boson masses, the
Standard Model Higgs potential develops a shallow local minimum at energies
of about 10'® GeV, where primordial inflation could have started in a cold
metastable state”, I. Masina, arXiv:1403.5244 [astro-ph.CO]

— See also: V. Brachina, Moriond 2014 (Phys.Rev.Lett.111, 241801 (2013)), G. Degrassi
et al, arXiv:1205.6497v2; R.Contino, Workshop sulla fisica p-p a LHC, 2013

04.04.22 R. Gongalo - Physics at the LHC 80



Top mass M, in GeV

The universe seems to live

SM
near a critical condition Sroken EW/ l Unbroken EW
JHEP 1208 (2012) 098 M

Why?! 0 "
Explained by underlying theory?
Anthropic principle?
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Yukawa coupling to fermions

o ~ N

2018 ATLAS 4.4~ = =

EXPERIMENT

Run: 303079

ol P P2 iPSILON CULTO FUGAS P3 CINECARTAZ Entrar

CIENCIA > ESPACO MEDICINA ECOSFERA

FiISICA DE PARTICULAS

Bosao de Higgs revela que relacao mantém
com o quark top

Investigadores portugueses participaram na descoberta.

o » 00000000

{ FiSICA DE PARTICULAS

® Bosao de Higgs visto (finalmente) a

¥ desintegrar-se em quarks bottom
‘ Descoberta anunciada no Laboratério Europeu de Fisica de Particulas

(CERN) é um passo fundamental para perceber como o bosao de Higgs
faz com que as particulas fundamentais adquiram massa.

O detector CMS no grande acelerador de particulas LHC, em Geneb:

PUBLICO . 28 de Agosto de 2018, 17:47
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nd many many more...

ATLAS Preliminary ¢ Data
{s=13TeV, 139 fb" ttH (u =10
B+ (u,=0.43)
[C]Background
Bkgd Unc.

Events /0.2

ATLAS CONF Note
ATLAS-CONF-2020-058

29th October 2020

Measurement of the Higgs boson decaying to
o ' b-quarks produced in association with a top-quark
- g,*l“b‘t’) C°”;b's",edl - » pair in pp collisions at ¥5 = 13 TeV with the
ilepton and Single lepton —a < .
Post-Fit ATLAS detector

.AA._.A;.AA.IA..I.‘AAl.
ttH (ug,,=1.0) + Bkgd The ATLAS Collaboration
0

T
o
X
o
s
©
(@]

/ ¢ The associated production of a Higgs boson with a top-quark pair is measured in events
) ) 18 16 1.4 1.2 - 208 characterised by the presence of one or two electrons or muons. The boson decay into a
b-quark pair is considered. The analysed data, corresponding to an integrated luminosity of
139 fb™", were collected in proton—proton collisions at the Large Hadron Collider between
2015 and 2018 at a centre-of-mass en of Vs = 13 TeV. The measured signal strer
defined as the ratio of the measured ield to that ’
This result corresponds to an observed (expected) significance of 1.3 (3.0) standard
deviations, in agreement with the Standard Model prediction. For the first time, the signal
strength is measured differentially in bins of the Higgs boson transverse momentum in the
simplified template cross-section framework, including a boosted selection targeting Higgs
boson transverse momentum above 300 GeV

© 2020 CERN enefit of the ATLAS C: ration

Reproduction ¢ article or parts of itis all s specified in the CC-BY-4.0 license

Higgs 2020
26-30 October 2020
Europe/Zurich timezone

Thereis a for this event.
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ttH CP measurement

Recent measurement in this PRL 1_25_061_.802
channel gives limits to a CP- e
odd admixture in the Higgs

Yukawa coupling

ATLAS
V{s=13TeV, 139 fb™

o4
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Summary

Higgs sector measurements look SM-
like so far

But there is new physics out there!

Higgs is a unique particle at the
center of the Standard Model edifice

It is the only fundamental scalar and AV |
connected to electroweak symmetry
breaking

A great window to look beyond the
Standard Model

And we have only collected =150 fb!
of 3000 fb! of 13 TeV data expected
at the HL-LHC
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