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Program for today

Why statistics?
Fundaments

Set theory and measure theory
Frequentist probability
Bayesian probability

Random variables and their properties
Distributions
Lesson 2
Estimating a physical quantity

Sufficiency principle
Likelihood Principle
Estimators and maximum likelihood
Profile likelihood ratio

Lesson 3
Confidence Intervals in nontrivial cases
Test of hypotheses

CLs
Significance

Truth and models
Summary
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Practicalities

Schedule: two days × two hours
This has evolved to being an excerpt from a longer course (about 10h)

You can find additional material, as well as a set of exercises, at
https://agenda.irmp.ucl.ac.be/event/4477/
The exercises, in particular, are designed to show the inner workings of several techniques: try to run
them! You can find them at https://github.com/vischia/intensiveCourse_public

Many interesting references, nice reading list for your career
Papers mostly cited in the topical slides
Some cool books cited here and there and in the appendix

These slides include some material that we won’t able to cover today
Mostly to provide some additional details without having to refer to the full course
Slides with this advanced material are those with the title in red

Unless stated otherwise, figures belong to P. Vischia for inclusion in my upcoming textbook on
Statistics for HEP
(textbook to be published by Springer in 2021)

Or I forgot to put the reference, let me know if you spot any figure obviously lacking reference, so that
I can fix it
I cannot put the recordings publicly online as “massive online course”, so I will distribute them only to
registered participants, and have to ask you to not record yourself. I hope you understand.

Your feedback is crucial for improving these lectures (a feedback form will be provided at the
end of the lectures)!

You can also send me an email during the lectures: if it is something I can fix for the next day, I’ll
gladly do so!
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Why statistics?
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Statistics is all about answering questions...

What is the chance of obtaining a 1 when throwing a six-faced die?

We can throw a dice 100 times, and count how many times we obtain 1

What is the chance of tomorrow being rainy?

We can try to give an answer based on the recent past weather, but we cannot – in general – repeat
tomorrow and count
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...and about making sure to be posing them in a meaningful way

Image from “The Tiger Lillies” Facebook page
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Where does statistics live

Theory
Approximations
Free parameters
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Parametric model:
θ1=1
θ2=1

Statistics!

Estimate parameters
Quantify uncertainty in the
parameters estimate
Test the theory!

Experiment

Random fluctuations
Mismeasurements
(detector effects, etc)
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Fundaments
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What is a “probability”? — Kolmogorov and set theory

Ω: set of all possible elementary (exclusive) events Xi

Exclusivity: the occurrence of one event implies that
none of the others occur
Probability then is any function that satisfies the
Kolmogorov axioms:

P(Xi) ≥ 0, ∀i
P(Xi or Xj) = P(Xi) + P(Xj)∑

Ω P(Xi) = 1

Andrey Kolmogorov.
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What is a “probability”? — Cox and Jaynes

Cox postulates: formalize a set of axioms starting from reasonable premises
doi:10.1119/1.1990764

Notation
A|B the plausibility of the proposition A given a related proposition B
∼ A the proposition “not-A”, i.e. answering “no” to “is A wholly true?”
F(x, y) a function of two variables
S(x) a function of one variable

The two postulates are
C · B|A = F(C|B · A, B|A)
∼ V|A = S(B|A), i.e. (B|A)m + (∼ B|A)m = 1

Cox theorem acts on propositions, Kolmogorov axioms on sets
Jaynes adheres to Cox’ exposition and shows that formally this is equivalent to Kolmogorov
theory

Kolmogorov axioms somehow arbitrary
A proposition referring to the real world cannot always be viewed as disjunction of propositions from
any meaningful set
Continuity as infinite states of knowledge rather than infinite subsets
Conditional probability not originally defined
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Random experiment
Repeat a random experiment ξ (e.g. toss of a die) many times under uniform conditions

As uniform as possible
S⃗: set of all a priori possible different results of an individual measurement
S: a fixes subset of S⃗

If in an experiment we obtain ξ ∈ S, we will say the event defined by ξ ∈ S has occurred
We assume that S is simple enough that we can tell whether ξ is in it or not

Throw a die: S⃗ = {1, 2, 3, 4, 5, 6}
If S = {2, 4, 6}, then ξ ∈ S corresponds to the event in which you obtain an even number of points

Repeat the experiment: among n repetitions the event has occurred ν times
Then ν

n is the frequency ratio of the event in the sequence of n experiments

Question time: Frequency Ratio

This afternoon: obtain the answer by simulation!
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Frequentist probability - 1

The most familiar one: based on the possibility of repeating an experiment many times

Consider one experiment in which a series of N events is observed.

n of those N events are of type X

Frequentist probability for any single event to be of type X is the empirical limit of the
frequency ratio:

P(X) = limN→∞
n
N
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Frequentist probability - 2

The experiment must be repeatable in the same conditions
The job of the physicist is making sure that all the relevant conditions in the experiments are
the same, and to correct for the unavoidable changes.

Yes, relevant can be a somehow fuzzy concept

In some cases, you can directly build the full table of frequencies (e.g. dice throws, poker)

What if the experiment cannot be repeated, making the concept of frequency ill-defined?
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Subjective (Bayesian) probability

Based on the concept of degree of belief
P(X) is the subjective degree of belief on X being true

De Finetti: operative definition of subjective probability, based on the concept of coherent bet
We want to determine P(X); we assume that if you bet on X, you win a fixed amount of money if X
happens, and nothing (0) if X does not happen
In such conditions, it is possible to define the probability of X happening as

P(X) :=
The largest amount you are willing to bet

The amount you stand to win
(1)
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Coherence

Coherence is a crucial concept
You can leverage your bets in order to try and not loose too much money in case you are wrong
Your bookie is doing a Dutch book on you if the set of bets guarantees a profit to him
You are doing a Dutch book on your bookie if the set of bets guarantees a profit to you
A bet is coherent if a Dutch book is impossible

This expression is mathematically a Kolmogorov probability!
Subjective probability is a property of the observer as much as of the observed system

It depends on the knowledge of the observer prior to the experiment, and is supposed to change
when the observer gains more knowledge (normally thanks to the result of an experiment)

Book Odds Probability Bet Payout
Trump elected Even (1 to 1) 1/(1 + 1) = 0.5 20 20 + 20 = 40
Clinton elected 3 to 1 1/(1 + 3) = 0.25 10 10 + 30 = 40

0.5 + 0.25 = 0.75 30 40
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Conditional probabilities: Bayes theorem

Interestingly, Venn diagrams were the basis of Kolmogorov approach (Jaynes, 2003)
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A word of advice about conditional probabilities

Conditional probabilities are not commutative! P(A|B) ̸= P(B|A)
Example:

speak English: the person speaks English
have TOEFL: the person has a TOEFL certificate

The probability for an English speaker to have a TOEFL certificate,
P(have TOEFL|speak English), is very small (<< 1%)

The probability for a TOEFL certificate holder to speak English,
P(speak English|have TOEFL), is (hopefully) >>>>> 1% ,
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Understanding conditioning can help even in marketing campaigns

From https://www.reddit.com/r/dataisugly/comments/boo6ld/when_venn_diagram_goes_wrong/
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A trickier example of conditional probability: the Monty Hall problem

Suppose you’re on a game show, and you’re given the choice of three doors
Behind one door is a car;
behind the others, goats.

You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another
door, say No. 3, which has a goat.

He then says to you, “Do you want to pick door No. 2?”

Is it to your advantage to switch your choice?
Question time: Monty Hall

The best strategy is to always switch!
The key is the presenter knows where the car is → he opens different doors

The picture would be different if the presenter opened the door at random

For the unconvinced: this afternoon we’ll build a small simulation to check your answer!

Behind 1 Behind 2 Behind 3 If you keep 1 If you switch Presenter opens
Car Goat Goat Win car Win goat 2 or 3

Goat Car Goat Win goat Win car 3
Goat Goat Car Win goat Win car 2
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Bayes Theorem and the Law of Total Probability

Bayes Theorem (1763)1:

P(A|B) :=
P(B|A)P(A)

P(B)
(2)

Valid for any Kolmogorov probability

The theorem can be expressed also by first starting from a subset B of the space

Decomposing the space S in disjoint sets Ai (i.e. ∩AiAj = 0∀i, j), ∪iAi = S an expression can
be given for B as a function of the Ais, the Law of Total Probability:

P(B) =
∑

i

P(B ∩ Ai) =
∑

i

P(B|Ai)P(Ai) (3)

where the second equality holds only for if the Ais are disjoint

Finally, the Bayes Theorem can be rewritten using the decomposition of S as:

P(A|B) :=
P(B|A)P(A)∑
i P(B|Ai)P(Ai)

(4)

1Actually the Bayesian approach has been mainly developed and popularized by Pierre Simon de Laplace
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A Diagnosis problem

The Bayes theorem permits to “invert” conditional probabilities, and can be applied to any
Kolmogorov probability, therefore in particular to both frequentist and Bayesian defintions
Let’s consider a mortal disease, and label the possible states of the patients

D: the patient is diseased (sick)
H: the patient is healthy

Let’s imagine we have devised a diagnostic test, characterized by the possible results
+: the test is positive to the disease
-: the test is negative to the disease

Imagine the test is very good in identifying sick people: P(+|D) = 0.99, and that the false
positives percentage is very low: P(+|H) = 0.01

You take the test, and the test is positive. Do you have the disease? Question time: Testing a
Disease

By the Bayes Theorem:

P(D|+) =
P(+|D)P(D)

P(+)
=

P(+|D)P(D)

P(+|D)P(D) + P(+|H)P(H)
(5)

We need the incidence of the disease in the population, P(D)! Back to question time: Testing
a Disease

It turns out P(D) is a very important to get our answer
P(D) = 0.001 (very rare disease): then P(D|+) = 0.0902, which is fairly small
P(D) = 0.01 (only a factor 10 more likely): then P(D|+) = 0.50, which is pretty high
P(D) = 0.1: then P(D|+) = 0.92, almost certainty!
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Bayes Theorem and Subjective Probability

Frequentist and Subjective probabilities differ in the way of interpreting the probabilities that
are written within the Bayes Theorem
Frequentist: probability is associated to sets of data (i.e. to results of repeatable experiments)

Probability is defined as a limit of frequencies
Data are considered random, and each point in the space of theories is treated independently
An hypothesis is either true or false; improperly, its probability can only be either 0 or 1. In general,
P(hypothesis) is not even defined
“This model is preferred” must be read as “I claim that there is a large probability that the data that I
would obtain when sampling from the model are similar to the data I already observed”2

We can only write about P(data|model)

Bayesian statistics: the definition of probability is extended to the subjective probabilty of
models or hypotheses:

P(H|X⃗) :=
P(X⃗|H)π(H)

P(X⃗)
(6)

2Typically it’s difficult to estimate this probability, so one reduces the data to a summary statistic S(data) with known distribution,
and computes how likely is to see S(datasampled) = S(dataobs) when sampling from the model
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Bayes and Laplace

Bayes’ article contains the Bayes theorem (explained via a game of pool)

A full system for subjective probabilities was (likely) independently developed by Laplace

In a sense, Laplace is the actual father of Bayesian statistics ,

More details in the books by Stephen M. Stigler (1996) and Sharon Bertsch McGrayne (2011)

Vischia Statistics for HEP March 16th and 18th, 2022 24 / 190



The elements of the Bayes Theorem, in Bayesian Statistics

P(H|X⃗) :=
P(X⃗|H)π(H)

P(X⃗)
(7)

X⃗, the vector of observed data
P(X⃗|H), the likelihood function, which fully summarizes the result of the experiment
(experimental resolution)
π(H), the probability of the hypothesis H. It represents the probability we associate to H
before we perform the experiment
P(X⃗), the probability of the data.

Since we already observed them, it is essentially regarded as a normalization factor
Summing the probability of the data for all exclusive hypotheses (by the Law of Total Probability),∑

i P(X⃗|Hi) = 1 (assuming that at least one Hi is true).
Usually, the denominator is omitted and the equality sign is replaced by a proportionality sign

P(H|X⃗) ∝ P(X⃗|H)π(H) (8)

P(H|X⃗), the posterior probability; it is obtained as a result of an experiment
If we parameterize H with a (continuous or discrete) parameter, we can use the parameter as
a proxy for H, and instead of writing P(H(θ)) we write P(θ) and

P(θ|X⃗) ∝ P(X⃗|θ)π(θ) (9)

The simplified expression is usually used, unless when the normalization is necessary
“Where is the value of θ such that θtrue < θc with 95% probability?”; integration is needed and the
normalization is necessary
“Which is the mode of the distribution?”; this is independent of the normalization, and it is therefore
not necessary to use the normalized expression
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Choosing a prior in Bayesian statistics; in theory... 1/

There is no golden rule for choosing a prior
Objective Bayesian school: it is necessary to write a golden rule to choose a prior

Usually based on an invariance principle

Consider a theory parameterized with a parameter, e.g. an angle β

Before any experiment, we are Jon Snow about the parameter β: we know nothing
We have to choose a very broad prior, or better uniform, in β

Now we interact with a theoretical physicist, who might have built her theory by using as a
parameter of the model the cosine of the angle, cos(β)

In a natural way, she will express her pre-experiment ignorance using an uniform prior in cos(β).
This prior is not constant in β!!!
In general, there is no uniquely-defined prior expressing complete ignorance or ambivalence in both
parameters (β and cos(β))

We can build a prior invariant for transformations of the parameter, but this means we have to
postulate an invariance principle

The prior already deviates from our degree of belief about the parameter (“I know nothing”)
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Choosing a prior in Bayesian statistics; in theory... 2/

Two ways of solving the situation
Objective Bayes: use a formal rule dictated by an invariance principle
Subjective Bayes: use something like elicitation of expert opinion

Ask an expert her opinion about each value of θ, and express the answer as a curve
Repeat this with many experts
100 years later check the result of the experiments, thus verifying how many experts were right, and re-calibrate
your prior
This corresponds to a IF-THEN proposition: “IF the prior is π(H), THEN you have to update it afterwards, taking
into account the result of the experiment”
Difficult in practice (query many experts, manage discussion, etc)

Central concept: update your priors after each experimient

Figure from Mikkola et al. (including Aki Vehtari) arxiv:2112.01380
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Pitfalls of subjective determination of the prior distribution

Identifying small probabilities is also somehow difficult for individuals
We saw it with COVID risk vs vaccine risk

Psychological reasons may lead to incoherences (C.P. Robert 2007, 2e, chapter 3)
44% of the respondents ready to undertake cancer treatment if told “survival probability is 68%”
18% of the respondents ready to undertake cancer treatment if told “probability of death is 32%”

Vischia Statistics for HEP March 16th and 18th, 2022 28 / 190



Choosing a prior in Bayesian statistics; in practice... 1/

In particle physics, the typical application of Bayesian statistics is to put an upper limit on a
parameter θ

Find a value θc such that P(θtrue < θc) = 95%

Typically θ represents the cross section of a physics process, and is proportional to a variable
with a Poisson p.d.f.

An uniform prior can be chosen, eventually restricted to θ ≥ 0 to account for the physical
range of θ
We can write priors as a function of other variables, but in general those variables will be
linked to the cross section by some analytic transformation

A prior that is uniforme in a variable is not in general uniform in a transformed variable; a uniform prior
in the cross section implies a non-uniform prior (not even linear) on the mass of the sought particle

In HEP, usually the prior is chosen uniform in the variable with the variable which is
proportional to the cross section of the process sought
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Choosing a prior in Bayesian statistics; in practice... 2/

Uniform priors must make sense
Uniform prior across its entire dominion: not very realistic
It corresponds to claimng that P(1 < θ ≤ 2) is the same as P(1041 < θ ≤ 1041 + 1)
It’s irrational to claim that a prior can cover uniformly forty orders of magnitude
We must have a general idea of “meaningful” values for θ, and must not accept results forty orders of
magnitude above such meaningful values

A uniform prior often implies that its integral is infinity (e.g. for a cross section, the dominion
being [0,∞]

Achieving a proper normalization of the posterior probability would be a nightmare

In practice, use a very broad prior that falls to zero very slowly but that is practically zero
where the parameter cannot meaningfully lie

This does not guarantee that it integrates to 1—it depends on the speed of convergence to zero
Improper prior
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Choosing a prior in Bayesian statistics; in practice... 3/
Associating parametric priors to intervals in the parameter space corresponds to considering
sets of theories

This is because to each value of a parameter corresponds a different theory
In practical situations, note (Eq. 9) posterior probability is always proportional to the product
of the prior and the likelihood

The prior must not necessarily be uniform across the whole dominion
It should be uniform only in the region in which the likelihood is different from zero

If the prior π(θ) is very broad, the product can sometimes be approximated with the
likelihood, P(X⃗|θ)π(H) ∼ P(X⃗|θ)

The likelihood function is narrower when the data are more precise, which in HEP often translates to
the limit N → ∞
In this limit, the likelihood is always dominant in the product
The posterior is indipendent of the prior!
The posteriors corresponding to different priors must coincide, in this limit
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Flat prior
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Broad vs narrow non-flat priors
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Broad prior and narrow-vs-peaked likelihood
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Literature on priors

The authors of STAN maintain a nice set of recommendations for choosing a prior distribution
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

It is supposed to present a balance between strongly informative priors (judged often unrealistic) and
noninformative priors

Deeply empirical recommendations
Give attention to computational constraints
A-priori dislike for invariance-principles based priors and Jeffreys priors

Not necessarily applicable to HEP without debate, but many rather reasonable perspectives
Weakly/Strongly informative depends not only on the prior but also on the question you are asking
“The prior can often only be understood in the context of the likelihood”
Weak == for a reasonably large amount of data, the likelihood will dominate
(a “weak” prior might still influence the posterior, if the data are weak)
Hard constraints should be reserved to true constraints (e.g. positive-definite parameters)
(otherwise, choose weakly informative prior on a larger range)
Check the posterior dependence on your prior, and perform prior predictive checks
doi:10.1111/rssa.12378
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Short summary on bayesian vs. frequentist

Frequentists are restricted to statements related to
P(data|theory) (kind of deductive reasoning)
The data is considered random
Each point in the “theory” phase space is treated independently (no notion of probability in the
“theory” space)
Repeatable experiments

Bayesians can address questions in the form
P(theory|data) ∝ P(data|theory) × P(theory) (it is intuitively what we normally would like to know)
It requires a prior on the theory
Huge battle on subjectiveness in the choice of the prior goes here - see §7.5 of James’ book
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Drawing some histograms
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Random Variables

Random variable: a numeric label for each element in the space of data (in frequentist
statistics) or in the space of the hypotheses (in Bayesian statistics)
In Physics, usually we assume that Nature can be described by continuous variables

The discreteness of our distributions would arise from scanning the variable in a discrete way
Experimental limitations in the act of measuring an intrinsically continuous variable)

Instead of point probabilities we’ll work with probabilities defined in intervals, normalized w.r.t.
the interval:

f (X) := lim
∆X→0

P(X)
∆X

(10)

Dimensionally, they are densities and they are called probability density functions (p.d.f. s)

Inverting the expression, P(X) =
∫

f (X)dX and we can compute the probability of an interval
as a definite interval

P(a < X < b) :=
∫ b

a
f (X)dX (11)
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p.d.f. for many variables

Extend the concept of p.d.f. to an arbitrary number of variables; the joint p.d.f. f (X, Y, ...)

If we are interested in the p.d.f. of just one of the variables the joint p.d.f. depends upon, we
can compute by integration the marginal p.d.f.

fX(X) :=
∫

f (X, Y)dY (12)

Sometimes it’s interesting to express the joint p.d.f. as a function of one variable, for a
particular fixed value of the others: this is the conditional p.d.f. :

f (X|Y) :=
f (X, Y)
fY(Y)

(13)
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Dispersion and distributions

Repeated experiments usually don’t yield the exact same result even if the physical quantity
is expected to be exactly the same

Random changes occur because of the imperfect experimental conditions and techniques
They are connected to the concept of dispersion around a central value

When repeating an experiment, we can count how many times we obtain a result contained in
various intervals (e.g. how often 1.0 ≤ L < 1.1, how often 1.1 ≤ L < 1.2, etc)

An histogram can be a natural way of recording these frequencies
The concept of dispersion of measurements is therefore related to that of dispersion of a distribution

In a distribution we are usually interested in finding a “central” value and how much the
various results are dispersed around it
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Distributions... or not?

HEP uses histograms mostly historically: counting experiments
Statistics and Machine Learning communities typically use densities

Intuitive relationship with the underlying p.d.f.
Kernel density estimates: binning assumption → bandwidth assumption
Less focused on individual bin content, more focused on the overall shape
More general notion (no stress about the limited bin content in tails)

In HEP, if your events are then used “as counting experiment” it’s more useful the histogram
But for some applications (e.g. Machine Learning) even in HEP please consider using density
estimates

Plots from TheGlowingPython and TowardsDataScience
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Sources of uncertainty (errors?)

Two fundamentally different kinds of uncertainties
Error: the deviation of a measured quantity from the true value (bias)
Uncertainty: the spread of the sampling distribution of the measurements

Random (statistical) uncertainties
Inability of any measuring device (and scientist) to give infinitely accurate answers
Even for integral quantities (e.g. counting experiments), fluctuations occur in observations on a small
sample drawn from a large population
They manifest as spread of answers scattered around the true value

Systematic uncertainties
They result in measurements that are simply wrong, for some reason
They manifest usually as offset from the true value, even if all the individual results can be consistent
with each other
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Expected values of a random variable

We define the expected value and mathematical expectation

E[X] :=
∫
Ω

Xf (X)dX (14)

In general, for each of the following formulas (reported for continuous variables) there is a
corresponding one for discrete variables, e.g.

E[X] :=
∑

i

XiP(Xi) (15)
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Generalizing expected values to functions of random variables

Extend the concept of expected value to a generic function g(X) of a random variable

E[g] :=
∫
Ω

g(X)f (X)dX (16)

The previous expression Eq. 14 is a special case of Eq. 16 when g(X) = X

The mean of X is:
µ := E[X] (17)

The variance of X is:

V(X) := E[(X − µ)2] = E[X2]− (E[X])2 = E[X2]− µ2 (18)

Mean and variance will be our way of estimating a “central” value of a distribution and of the
dispersion of the values around it
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Let’s make it funnier: more variables!
Let our function g(X) be a function of more variables, X⃗ = (X1,X2, ...,Xn) (with p.d.f. f (X⃗))

Expected value: E(g(X⃗)) =
∫

g(X⃗)f (X⃗)dX1dX2...dXn = µg

Variance: V[g] = E
[
(g − µg)

2] =
∫
(g(X⃗) − µg)

2f (X⃗)dX1dX2...dXn = σ2
g

Covariance: of two variables X, Y:
VXY = E

[
(X − µX)(Y − µY)

]
= E[XY]− µXµY =

∫
XYf (X, Y)dXdY − µXµY

It is also called “error matrix”, and sometimes denoted cov[X, Y]
It is symmetric by construction: VXY = VYX , and VXX = σ2

X

To have a dimensionless parameter: correlation coefficient ρXY =
VXY

σXσY

VXY is the expectation for the product of
deviations of X and Y from their means

If having X > µX enhances P(Y > µY), and
having X < µX enhances P(Y < µY), then
VXY > 0: positive correlation!
ρXY is related to the angle in a linear
regression of X on Y (or viceversa)

It does not capture non-linear correlations
Question time: CorrCoeff
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What can you get from ρXY

Informs on the direction (co-increase, increase-decrease, none) of a linear correlation

Does NOT inform on the slope of the correlation

Several non-linear correlations yield ρXY

Figure from BND2010
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Take it to the next level: the Mutual Information
Covariance and correlation coefficients act taking into account only linear dependences
Mutual Information is a general notion of correlation, measuring the information that two
variables X and Y share

I(X; Y) =
∑
y∈Y

∑
x∈X

p(x, y)log

(
p(x, y)

p1(x)p2(y)

)
Symmetric: I(X; Y) = I(Y;X)
I(X; Y) = 0 if and only if X and Y are totally independent

X and Y can be uncorrelated but not independent; mutual information captures this!
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X = N(0,1); Y = WX; W is the Rademacher distribution Related to entropy

I(X; Y) = H(X)− H(X|Y)
= H(Y)− H(Y|X)
= H(X) + H(Y)− H(X, Y)
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The Binomial distribution

Binomial
Discrete variable: r, positive integer ≤ N
Parameters:

N, positive integer
p, 0 ≤ p ≤ 1

Probability function:
P(r) =

(N
r

)
pr(1 − p)N−r , r = 0, 1, ...,N

E(r) = Np, V(r) = Np(1 − p)
Usage: probability of finding exactly r
successes in N trials. The distribution of the
number of events in a single bin of a
histogram is binomial (if the bin contents are
independent)
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p=0.3, N=20
p=0.7, N=20
p=0.5, N=40

Example: which is the probability of obtaining 3 times the number 6 when throwing a 6-faces
die 12 times?

N = 12, r = 3, p = 1
6

P(3) =
(12

3

)( 1
6

)3
(1 − 1

6 )
12−3 = 12!

3!9!
1

63

(
5
6

)9
= 0.1974
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The Poisson distribution

Poisson
Discrete variable: r, positive integer
Parameter: µ, positive real number

Probability function: P(r) = µre−µ

r!
E(r) = µ, V(r) = µ
Usage: probability of finding exactly r events
in a given amount of time, if events occur at a
constant rate.

Example: is it convenient to put an
advertising panel along a road?
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µ=1
µ=5
µ=15

Probability that at least one car passes through the road on each day, knowing on average 3
cars pass each day

P(X > 0) = 1 − P(0), and use Poisson p.d.f.

P(0) =
30e−3

0!
= 0.049787

P(X > 0) = 1 − 0.049787 = 0.95021.

Now suppose the road serves only an industry, so it is unused during the weekend; Which is
the probability that in any given day exactly one car passes by the road?

Navg per dia =
3
5
= 0.6

P(X) =
0.61e−0.6

1!
= 0.32929
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The Gaussian distribution

Gaussian or Normal distribution
Variable: X, real number
Parameters:

µ, real number
σ, positive real number

Probability function:

f (X) = N(µ, σ2) = 1
σ
√

2π
exp

[
− 1

2
(X−µ)2

σ2

]
E(X) = µ, V(X) = σ2

Usage: describes the distribution of
independent random variables. It is also the
high-something limit for many other
distributions

−3 −2 −1 0 1 2 3
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Gaussian p.d.f.

x

P
ro

ba
bi

lit
y 

de
ns

ity

µ=0, σ=1
µ=1, σ=1
µ=0, σ=0.7

Vischia Statistics for HEP March 16th and 18th, 2022 50 / 190



The χ2 distribution

Parameter: integer N > 0 degrees of
freedom

Continuous variable X ∈ R
p.d.f., expected value, variance

f (X) =
1
2

( X
2

) N
2 −1e−

X
2

Γ
(N

2

)
E[r] = N

V(r) = 2N

It describes the distribution of the sum of the
squares of a random variable,

∑N
i=1 X2
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Reminder: Γ() := N!
r!(N−r)!
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Some relationships among distributions

It is often convenient to know the asymptotic properties of the various distributions

Normal Student's tMultinomial

F distributionChi square

Binomial Poisson

p→0
Np=μ

N→∞

i=2

N→∞

ν2→∞

ν1→∞
ν1→∞ν2→∞

N→∞

μ→∞N→∞
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End of Lesson 1
Why statistics?

Fundaments
Set theory and measure theory
Frequentist probability
Bayesian probability

Random variables and their properties

Distributions

Lesson 2

Estimating a physical quantity
Sufficiency principle
Likelihood Principle
Estimators and maximum likelihood
Profile likelihood ratio

Lesson 3

Confidence Intervals in nontrivial cases

Test of hypotheses
CLs
Significance

Truth and models

Summary
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Lesson 2
Point and Interval estimation
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Estimating a physical quantity
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Estimators

Set x⃗ = (x1, ..., xN) of N statistically independent observations xi, sampled from a p.d.f. f (x).

Mean and width of f (x) (or some parameter of it: f (x; θ⃗), with θ⃗ = (θ1, ..., θM) unknown)
In case of a linear p.d.f., the vector of parameters would be θ⃗ = (intercept, slope)

We call estimator a function of the observed data x⃗ which returns numerical values ˆ⃗
θ for the

vector θ⃗.

ˆ⃗
θ is (asymptotically) consistent if it converges to θ⃗true
for large N:

lim
N→∞

ˆ⃗
θ = θ⃗true

ˆ⃗
θ is unbiased if its bias is zero, b⃗ = 0

Bias of ˆ⃗θ: b⃗ := E[ ˆ⃗θ] − θ⃗true

If bias is known, can redefine ˆ⃗
θ′ =

ˆ⃗
θ − b⃗, resulting in

b⃗′ = 0.
ˆ⃗
θ is efficient if its variance V[

ˆ⃗
θ] is the smallest possible Plot from James, 2nd ed.

An estimator is robust when it is insensitive to small deviations from the underlying
distribution (p.d.f.) assumed (ideally, one would want distribution-free estimates, without
assumptions on the underlying p.d.f.)



Sufficient statistic

A test statistic is a function of the data (a quantity derived from the data sample)
When X ∼ f (X|θ), a statistic T = T(X) is sufficient for θ if the density function f (X|T) is
independent of θ

If T is a sufficient statistic for θ, then also any strictly monotonic g(T) is sufficient for θ

Minimal sufficient statistic: a sufficient statistic that is a function of all other sufficient statistics
for θ
The statistic T carries as much information about θ as the original data X

No other function can give any further information about θ
Same inference from data X with model M and from sufficient statistic T(X) with model M′

Rao–Blackwell theorem: if g(X) is an estimator for θ and T is a sufficient statistic, then the
conditional expectation of g(X) given T(X) is never a worse estimator of θ

Practical procedure: build a ballpark estimator g(X), then condition it on a T(X) to obtain a better
estimator

The Sufficiency Principle: Two observations X and Y that factorize through the same value
of T(·), i.e. s.t. T(x) = T(y), must lead to the same inference about θ

Images from AmStat magazine and from Illinois.edu
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Example of sufficient statistic

Given some data 1, 2, 3, 4, 5, you may want to estimate the population mean
Consider the sample mean x̂ = 1+2+3+4+5

5 = 3 as an estimator of the sample mean (3 is the
estimate)
Imagine we don’t have the data; we only know that the sample mean is 3
Is the sample mean a sufficient statistic? Question time: Sufficient statistic

If you only knew the sample mean of 3, you would estimate the population mean to be 3 anyway,
regardless of having the data or not
Knowing the data (the set 1, 2, 3, 4, 5) or knowing only the sample mean does not improve our
estimate for the population mean

Estimate the binomial probability of obtaining r heads in N coin tosses

Record heads and tails, with their order: HTTHHHTHHTTTHTHTH
Can we somehow improve by identifying a sufficient statistic? Question time: Sufficient Statistic
What happens if we record only the number of heads? (remember that the binomial p.d.f. is:
P(r) =

(N
r

)
pr(1 − p)N−r , r = 0, 1, ...,N)

Recording only the number of heads (no tails, no order) gives exactly the same information
Data can be reduced; we only need to store a sufficient statistic (the distribution f (X|T) is
independent of θ)
Storage needs are reduced!!!
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Ancillary statistic and pivotal quantities

Pivotal quantity: its distribution does not depend on the
parameters

For a Gaus(µ, σ2) p.d.f., X̄−µ

S/
√

N
∼ tstudent is a pivot

See exercise this afternoon

Ancillary statistic for a parameter θ: a statistic f (X) which does not depend on θ
Concept linked to that of (minimal) sufficient statistic; (maximal) data reduction while retaining all
Fisher information about θ

Can an ancillary statistic can give information about θ even if it does not depend on it? QT!
Ancillary

Yes!

Sample X1 and X2 from Pθ(X = θ) = Pθ(X = θ + 1) = Pθ(X = θ + 2) = 1
3

Ancillary statistic: R := X2 − X1 (no information about θ)
Minimal sufficient statistic: M :=

X1+X2
2

Sample point (M = m, R = r): either θ = m, or θ = m − 1, or θ = m − 2
If R = 2, then necessarily X1 = m − 1 and X2 = m − 2; Therefore necessarily θ = m − 1

Knowledge of R alone carries no information on θ, but increases the precision on an estimate
of θ (Cox, Efron, Hinckley)!
Powerful tool to improve data reduction capabilities (save money...)
Also employed for asymptotic likelihood expressions

Also impact on approximate expressions for significance
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Information, the Fisher way

The information of a set of observations should increase with the number of observations
Double the data should result in double the information if the data are independent

Information should be conditional on what we want to learn from the experiment
Data which are irrelevant to our hypothesis should carry zero information relative to our hypothesis

Information should be related to precision
The greatest the information carried by the data, the better the precision of our result
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The Likelihood Principle — Enunciation

Common enunciation: given a set of observed data x⃗, the likelihood function L(⃗x; θ) contains
all the information that is relevant to the estimation of the parameter θ contained in the data
sample

The likelihood function is seen as a function of θ, for a fixed set (a particular realization) of observed
data x⃗
The likelihood is used to define the information contained in a sample
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The Likelihood Principle — Bayesians and Frequentists

Bayesian statistics automatically satisfies the likelihood principle
P(θ|⃗x) ∝ L(⃗x; θ) × π(θ): the only quantity depending on the data is the likelihood
Information as a broad way of saying all the possible inferences about θ
“Probably tomorrow will rain”

Frequentist statistics: information more strictly as Fisher information (connection with
curvature of L(⃗x; θ))

Usually does not comply (have to consider the hypothetical set of data that might have been obtained)
Need to recast question in terms of hypotetical data
Example: tail areas from sampling distributions obtained with toys
Even in forecasts: computer simulations of the day of tomorrow, or counting the past frequency of
correct forecasts by the grandpa feeling arthritis in the shoulder
“The sentence -tomorrow it will rain- is probably true”

The Likelihood Principle is quite vague: no practical prescription for drawing inference from
the likelihood

Bayesian Maximum a-posteriori (MAP) estimator automatically maximizes likelihood
Maximum Likelihood estimator (MLE) maximizes likelihood automatically, but some foundational
issues
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The Likelihood Principle — is it profound?

Two likelihoods differing by only a normalization factor are equivalent
Implies that information resides in the shape of the likelihood

George Bernard: replace a dataset D with a dataset D + Z, where Z is the result of tossing a
coin

Assume that the coin toss is independent on the parameter θ you seek to determine
Sampling probability: p(DZ|θ) = p(D|θ)p(Z)
The coin toss tells us nothing about the parameter θ beyond what we already learn by considering D
only
Any inference we do with D must therefore be the same as any inference we do with D + Z
In particular, normalizations cancel out in ratio: L1

L2
=

p(DZ|θ1 I)
p(DZ|θ2 I) =

p(D|θ1 I)
p(D|θ2 I)

Do you believe probability comes from the imperfect knowledge of the observer?
Then the likelihood principle does not seem too profound besides the mathematical simplifications it
allows

Do you believe that probability is a physical phaenomenon arising from randomness?
Then the likelihood principle has for you a profound meaning of valid principle of inference
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Likelihood and Fisher Information
A very narrow likelihood will provide much information about θtrue

The posterior probability will be more localized than the prior in the regimen in which the likelihood
function dominates the product L(⃗x; θ⃗) × π
Ideally we’d want to connect this with the Fisher Information, which therefore be large

A very broad likelihood will not carry much information, and ideally the computed Fisher
Information will be small
What’s a reasonable definition of Fisher Information based on the likelihood function?
Question time: Likelihood and Information
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Likelihood, Score, and Information

Score: ∂
∂θ

lnL(X; θ)

Under broad regularity conditions, if X ∼ f (x|θtrue) the expectation of the score calculated for
θ = θtrue is zero

E
[ ∂

∂θ
lnL(X; θ)|θ = θtrue

]
=

∂

∂θ

∫
f (x|θtrue)dx =

∂

∂θ
1 = 0

Fisher Information: the variance of the score

I(θ) = E
[( ∂

∂θ
lnL(X; θ)

)2
|θtrue

]
=

∫ ( ∂

∂θ
lnf (x|θ)

)2
f (x|θ)dx ≥ 0

Under some regularity conditions, and when the likelihood is twice differentiable, then you can
“exchange” the exponent and the number of derivations

I(θ) = −E
[( ∂2

∂θ2
lnL(X; θ)

)2
|θtrue

]
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Likelihood and Fisher Information

The narrowness of the likelihood can be estimated by looking at its curvature

The curvature is the second derivative with respect to the parameter of interest

A very narrow (peaked) likelihood is characterized by a very large and positive
curvature − ∂2lnL

∂θ2

The second derivative of the likelihood is linked to the Fisher Information

I(θ) = −E

[
∂2lnL
∂θ2

]
= E

[(
∂lnL
∂θ

)2]
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Fisher Information and Jeffreys priors
When changing variable, the change of parameterization must not result in a change of the
information

The information is a property of the data only, through the likelihood—that summarizes them
completely (likelihood principle)

Search for a parametrization θ′(θ) in which the Fisher Information is constant
Compute the prior as a function of the new variable

π(θ) = π(θ′)
∣∣∣ dθ′

dθ

∣∣∣ ∝
√√√√E

[(
∂lnN
∂θ′

)2]∣∣∣∣∣∂θ′∂θ

∣∣∣∣∣
=

√√√√E

[(
∂lnL
∂θ′

∂θ′

∂θ

)2]

=

√√√√E

[(
∂lnL
∂θ

)2]
=
√

I(θ)

For any θ, π(θ) =
√

I(θ); with this choice, the information is constant under changes of
variable
Such priors are called Jeffreys priors, and assume different forms depending on the type of
parametrization

Location parameters: uniform prior
Scale parameters: prior ∝ 1

θ

Poisson processes: prior ∝ 1√
θ
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The Maximum Likelihood Method 1/
Let x⃗ = (x1, ..., xN) be a set of N statistically independent observations xi, sampled from a
p.d.f. f (x; θ⃗) depending on a vector of parameters
Under independence of the observations, the likelihood function factorizes into the individual
p.d.f. s

L(⃗x; θ⃗) =
N∏

i=1

f (xi, θ⃗)

The maximum-likelihood estimator is the θ⃗ML which maximizes the joint likelihood

θ⃗ML := argmaxθ
(

L(⃗x, θ⃗)
)

The maximum must be global
Numerically, it’s usually easier to minimize

− lnL(⃗x; θ⃗) = −
N∑

i=1

lnf (xi, θ⃗)

Easier working with sums than with products
Easier minimizing than maximizing

If the minimum is far from the range of permitted values for θ⃗, then the minimization can be
performed by finding solutions to

−
lnL(⃗x; θ⃗)

∂θj
= 0

It is assumed that the p.d.f. s are correctly normalized, i.e. that
∫

f (⃗x; θ⃗)dx = 1 (→ integral does not
depend on θ⃗)
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The Maximum Likelihood Method 2/

Solutions to the likelihood minimization are found via numerical methods such as MINOS
Fred James’ Minuit: https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html

θ⃗ML is an estimator → let’s study its properties!
1 Consistent: limN→∞ θ⃗ML = θ⃗true;
2 Unbiased: only asymptotically. b⃗ ∝ 1

N , so b⃗ = 0 only for N → ∞;
3 Efficient: V[θ⃗ML] =

1
I(θ)

4 Invariant: for change of variables ψ = g(θ); ψ̂ML = g(θ⃗ML)

θ⃗ML is only asymptotically unbiased, and therefore it does not always represent the best
trade-off between bias and variance

Remember that in frequentist statistics L(⃗x; θ⃗) is not a p.d.f. . In Bayesian statistics, the
posterior probability is a p.d.f.:

P(θ⃗|⃗x) =
L(⃗x|θ⃗)π(θ⃗)∫
L(⃗x|θ⃗)π(θ⃗)dθ⃗

Note that if the prior is uniform, π(θ⃗) = k, then the MLE is also the maximum of the posterior
probability, θ⃗ML = maxP(θ⃗|⃗x).
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Nuclear Decay with Maximum Likelihood Method

A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

f (t; τ) =
1
τ

e−
t
τ

E[f ] = τ

V[f ] = τ 2

Sampling N independent measurements ti from the same p.d.f. results in a set of
measurements identically distributed
Exercise: compute the MLE for this p.d.f.

The joint p.d.f. can be factorized

f (t1, ...tN ; τ) =
∏

i

f (ti; τ)

For a particular set of N measurements ti, the p.d.f. can be written as a function of τ only,
L(τ) := f (ti; τ)

Now all you need to do is to maximize the likelihood

The logarithm of the likelihood, lnL(τ) =
∑(

ln 1
τ
− ti

τ

)
, can be maximized analytically

∂lnL(τ)
∂τ

=
∑

i

(
−

1
τ
+

ti
τ 2

)
≡ 0
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Nuclear Decay with Maximum Likelihood Method
The maximum-likelihood estimator is

τ̂(t1, ..., tN) =
1
N

∑
i

ti

It’s the simple arithmetical mean of the individual measurements!
What’s the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1

The expected value is E[τ̂ ] = τ , and the estimator is unbiased:

b = E[τ̂ ]− E[f ] = τ − τ = 0

What is the variance? Which is its relationship to N? Is the estimator efficient? QT: N D 1
The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]
=

1
N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table!
Consistent Unbiased Efficient

τ̂ = τ̂ML = t1+...+tN
N

τ̂ = t1+...+tN
N−1

τ̂ = ti

Table: Properties of different estimators of the half life for a nuclear decay.
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The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]
=

1
N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table!
Consistent Unbiased Efficient

τ̂ = τ̂ML = t1+...+tN
N

τ̂ = t1+...+tN
N−1

τ̂ = ti

Table: Properties of different estimators of the half life for a nuclear decay.
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[ 1
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]
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N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table!
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τ̂ = τ̂ML = t1+...+tN
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Nuclear Decay with Maximum Likelihood Method
The maximum-likelihood estimator is

τ̂(t1, ..., tN) =
1
N

∑
i

ti

It’s the simple arithmetical mean of the individual measurements!
What’s the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1
The expected value is E[τ̂ ] = τ , and the estimator is unbiased:

b = E[τ̂ ]− E[f ] = τ − τ = 0

What is the variance? Which is its relationship to N? Is the estimator efficient? QT: N D 1
The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]
=

1
N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table! Question time: Nuclear
Decay 2

Consistent Unbiased Efficient
τ̂ = τ̂ML = t1+...+tN

N ✓ ✓ ✓

τ̂ = t1+...+tN
N−1 ✓ ✗ ✗

τ̂ = ti

Table: Properties of different estimators of the half life for a nuclear decay.

Vischia Statistics for HEP March 16th and 18th, 2022 73 / 190



Nuclear Decay with Maximum Likelihood Method
The maximum-likelihood estimator is

τ̂(t1, ..., tN) =
1
N

∑
i

ti

It’s the simple arithmetical mean of the individual measurements!
What’s the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1
The expected value is E[τ̂ ] = τ , and the estimator is unbiased:

b = E[τ̂ ]− E[f ] = τ − τ = 0

What is the variance? Which is its relationship to N? Is the estimator efficient? QT: N D 1
The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]
=

1
N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table! Question time: Nuclear
Decay 2

Consistent Unbiased Efficient
τ̂ = τ̂ML = t1+...+tN

N ✓ ✓ ✓

τ̂ = t1+...+tN
N−1 ✓ ✗ ✗

τ̂ = ti ✗ ✓ ✗

Table: Properties of different estimators of the half life for a nuclear decay.
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Why τ̂ = ti is unbiased

Bias: b = E[τ̂ ]− τ
Note: if you don’t know the true value, you must simulate the bias of the method
Generate toys with known parameters, and check what is the estimate of the parameter for the toy
data
If there is a bias, correct for it to obtain an unbiased estimator

ti is an individual observation, which is still sampled from the original factorized p.d.f.

f (ti; τ) = 1
τ

e−
ti
τ

The expected value of ti is therefore still E[τ̂ ] = E[ti] = τ

τ̂ = ti is therefore unbiased!
Consistent Unbiased Efficient

τ̂ = ti ✗ ✓ ✗

Table: Properties of different estimators of the half life for a nuclear decay.
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Bias-variance tradeoff and optimal variance 1/

We usually want to optimize both bias b⃗ and variance V[
ˆ⃗
θ]

While we can optimize each one separately, optimizing them simultaneously leads to none
being optimally optimized, in genreal

Optimal solutions in two dimensions are often suboptimal with respect to the optimization of just one
of the two properties

The variance is linked to the width of the likelihood function, which naturally leads to linking it
to the curvature of L(⃗x; θ⃗) near the maximum

However, the curvature of L(⃗x; θ⃗) near the maximum is linked to the Fisher information, as we
have seen

Information is therefore a limiting factor for the variance (no data set contains infinite
information, variance cannot collapse to zero)

Variance of an estimator satisfies the Rao-Cramér-Frechet (RCF) bound

V[θ̂] ≥
1

θ̂
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Information Inequality – 1

Rao-Cramer-Frechet (RCF) bound

V[θ̂] ≥ (1+∂b/∂θ)2

−E
[
∂2lnL/∂θ2

]
In multiple dimensions, link with the information is maintaned via the full Fisher Information Matrix:
Iij = E

[
∂2lnL/∂θi∂θj

]
Approximations

Neglect the bias (b = 0)
Inequality is an approximate equality (true for large data samples)

V[θ̂] ≃ 1
−E
[
∂2lnL/∂θ2

]
Estimate of the variance of the estimate of the parameter!

V̂[θ̂] ≃ 1
−E
[
∂2lnL/∂θ2

]
|
θ= ˆtheta

For a generic unbiased estimator, can define efficiency of the estimator as

e(θ̂) :=
I(θ)−1

V[θ̂]

The efficiency of a generic unbiased estimator, because of the RCF bound, is always e(θ̂) ≤ 1
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Bias-variance tradeoff and optimal variance 2/

For multidimensional parameters, we can build the information matrix with elements:

Ijk(θ⃗) = −E
[ N∑

i

∂2lnf (xi; θ⃗)

∂θk∂θk

]
= N

∫
1
f
∂f
∂θj

∂f
∂θk

dx

(the last equality is due to the integration interval not being dependent on θ⃗)
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Estimating variance non-analytically

We have calculated the variance of the MLE in the simple case of the nuclear decay

Analytic calculation of the variance is not always possible

Write the variance approximately as:

V[θ̂] ≥

(
1 + ∂b

∂θ

)2

−E
[
∂2lnL
∂θ2

]
This expression is valid for any estimator, but if applied to the MLE then we can note θ⃗ML is
efficient and asymptotically unbiased

Therefore, when N → ∞ then b = 0 and the variance approximate to the RCF bound, and ≥
becomes ≃:

V[θ⃗ML] ≃
1

−E
[
∂2lnL
∂θ2

]∣∣∣
θ=θ⃗ML
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How to extract an interval from the likelihood function 1/

For a Gaussian p.d.f., f (x; θ⃗) = N(µ, σ), the likelihood can be written as:

L(⃗x; θ⃗) = ln
[
−

(⃗x − θ⃗)2

2σ2

]
Moving away from the maximum of L(⃗x; θ⃗) by one unit of σ, the likelihood assumes the value
1
2 , and the area enclosed in [θ⃗ − σ, θ⃗ + σ] will be—because of the properties of the Normal
distribution—equal to 68.3%.
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How to extract an interval from the likelihood function 2/
We can therefore write

P
(
(⃗x − θ⃗)2 ≤ σ)

)
= 68.3%

P(−σ ≤ x⃗ − θ⃗ ≤ σ) = 68.3%

P(⃗x − σ ≤ θ⃗ ≤ x⃗ + σ) = 68.3%

Taking into account that it is important to keep in mind that probability is a property of sets, in
frequentist statistics

Confidence interval: interval with a fixed probability content
This process for computing a confidence interval is exact for a Gaussian p.d.f.

Pathological cases reviewed later on (confidence belts and Neyman construction)
Practical prescription:

Point estimate by computing the Maximum Likelihood Estimate
Confidence interval by taking the range delimited by the crossings of the likelihood function with 1

2 (for
68.3% probability content, or 2 for 95% probability content—2σ, etc)
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How to extract an interval from the likelihood function 3/
MLE is invariant for monotonic transformations of θ

This applies not only to the maximum of the likelihood, but to all relative values
The likelihood ratio is therefore an invariant quantity (we’ll use it for hypothesis testing)
Can transform the likelihood such that log(L(⃗x; θ⃗)) is parabolic, but not necessary (MINOS/Minuit)

When the p.d.f. is not normal, either assume it is, and use symmetric intervals from Gaussian
tails...

This yields symmetric approximate intervals
The approximation is often good even for small amounts of data

...or use asymmetric intervals by just looking at the crossing of the log(L(⃗x; θ⃗)) values
Naturally-arising asymmetrical intervals
No gaussian approximation

In any case (even asymmetric intervals) still based on asymptotic expansion
Method is exact only to O( 1

N )

Plot from James, 2nd ed.
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How to extract an interval from the likelihood function

Theorem: for any p.d.f. f (x|θ⃗), in the large numbers limit N → ∞, the likelihood can always
be approximated with a gaussian:

L(⃗x; θ⃗) ∝N→∞ e−
1
2 (θ⃗−θ⃗ML)

T H(θ⃗−θ⃗ML)

where H is the information matrix I(θ⃗).

Under these conditions, V[θ⃗ML] → 1
I(θ⃗ML)

, and the intervals can be computed as:

∆lnL := lnL(θ′)− lnLmax = −
1
2

The resulting interval has in general a larger probability content than the one for a gaussian
p.d.f., but the approximation grows better when N increases

The interval overcovers the true value θ⃗true
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How to extract an interval from the likelihood function—interpretation

θ⃗true is therefore stimated as θ̂ = θ⃗ML ± σ. This is another situation in which frequentist and
Bayesian statistics differ in the interpretation of the numerical result

Frequentist: θ⃗true is fixed
“if I repeat the experiment many times, computing each time a confidence interval around θ⃗ML, on
average 68.3% of those intervals will contain θ⃗true”
Coverage: “the interval covers the true value with 68.3% probability”
Direct consequence of the probability being a property of data sets

Bayesian: θ⃗true is not fixed
“the true value θ⃗true will be in the range [θ⃗ML − σ, θ⃗ML + σ] with a probabilty of 68.3%”
This corresponds to giving a value for the posterior probability of the parameter θ⃗true
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Non-normal likelihoods and Gaussian approximation — 1

How good is the approximation L(⃗x; θ⃗) ∝ exp
[
− 1

2 (θ⃗ − θ⃗MLE)T H(θ⃗ − θ⃗ML)
]
?

Here H is the information matrix I(θ⃗)
True only to O( 1

N )

In these conditions, V[θ⃗ML] → 1
I(θ⃗ML)

Intervals can be derived by crossings: ∆lnL = lnL(θ′) − lnLmax = k

This afternoon: we’ll convince ourselves of how good is this approximation in case of the
nuclear decay!
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Non-normal likelihoods and Gaussian approximation — 2

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Nuclear decay at time t=1 and N=1

1 τ

Li
ke

lih
oo

d 
(a

.u
.)

Exact MLE
Gaussian approximation

0.6 0.8 1.0 1.2 1.4
0.

0
0.

5
1.

0
1.

5
2.

0

Nuclear decay at time t=1 and N=10

1 τ

Li
ke

lih
oo

d 
(a

.u
.)

Exact MLE
Gaussian approximation

Vischia Statistics for HEP March 16th and 18th, 2022 86 / 190



Non-normal likelihoods and Gaussian approximation — 3
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The Central Limit Theorem

The convergence of the likelihood L(⃗x; θ⃗) to a gaussian is a direct consequence of the central
limit theorem

Take a set of measurements x⃗ = (xi, ..., xN) affected by experimental errors that results in
uncertainties σ1, ..., σN (not necessarily equal among each other)

In the limit of a large number of events, M → ∞, the random variable built summing M
measurements is gaussian-distributed:

Q :=
M∑

j=1

xj ∼ N
( M∑

j=1

xj,
M∑

j=1

σ2
j

)
, ∀ f (x, θ⃗)

The demonstration runs by expanding in series the characteristic function yi =
xj−µj√

σj

The theorem is valid for any p.d.f. f (x, θ⃗) that is reasonably peaked around its expected value.
If the p.d.f. has large tails, the bigger contributions from values sampled from the tails will have a
large weight in the sum, and the distribution of Q will have non-gaussian tails
The consequence is an alteration of the probability of having sums Q outside of the gaussian
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Asymptoticity of the Central limit theorem

The condition M → ∞ is reasonably valid if the sum is of many small contributions.

How large does M need to be for the approximation to be reasonably good? Question time:
Central Limit

This afternoon we’ll check!
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And in many dimensions...

Construct logL contours and determine confidence intervals by MINOS
Elliptical contours correspond to gaussian Likelihoods

The closer to MLE, the more elliptical the contours, even in non-linear problems
All models are linear in a sufficiently small region

Nonlinear regions not problematic (no parabolic transformation of logL needed)
MINOS accounts for non-linearities by following the likelihood contour

Confidence intervals for each
parameter

max
θj,j̸=i

logL(θ) = logL(θ̂)− λ

λ =
Z2

1−β

2
λ = 1/2 for β = 0.683 (“1σ”)
λ = 2 for β = 0.955 (“2σ”)

Plot from James, 2nd ed.
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Profile likelihood ratio step by step for cross sections — Expected events
We used to compute the total cross section of a given process by applying the naïve formula

σ =
Ndata − Nbkg

ϵL
.

Nsig estimated from Ndata − Nbkg for the measured integrated luminosity L
The acceptance ϵ accounts for th. branching fractions fiducial region for the measurement
(fiducial region: generator-level selection which defines the phase space of the measurement)

Nowadays we model everything into the likelihood function
p(x|µ, θ) pdf for the observable x to assume a certain value in a single event

µ := σ
σpred

(single- or multi-dimensional) parameter of interest (POI). A multiplier of the predicted

cross section: signal strength
θ (generally multi-dimensional) nuisance parameter representing all the uncertainties affecting the
measurement.

Extend to a data set of many events X = {x1, ..., xn} by taking the product of the single-event
p.d.f.s.

n∏
e=1

p(xe|µ, θ)

The number of events in the data set is however a random variable itself!
Poisson distribution with mean equal to the number of events ν we expect from theory

Marked Poisson model

f (X|ν(µ, θ), µ, θ) = Pois(n|ν(µ, θ))
n∏

e=1

p(xe|µ, θ) .

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ,
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Profile likelihood ratio step by step for cross sections — Systematic uncertainties

Both µ and θ act on the individual pdfs for the observable and on the expectation for the
global amount of events
Incorporate systematic uncertainties as nuisance parameter θ:
Conway, 2011 in CERN-2011-006115

Constrain the terms in the fit: constraint interpreted as prior coming from the auxiliary measurement
θ estimated with uncertainty δθ
Often Gaussian pdf, unless θ has a physical bound at zero: then log-normal (rejects negative values)

Likelihood L(µ, θ;X): take the marked Poisson model f (X|ν(µ, θ), µ, θ) and condition on the
observed value of X

MLE: µ̂ := argmaxµL(µ, θ;X) still depends on the nuisance parameters θ

L(n,α0|µ,α) =
∏

i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(α0
j |αj, δαj)y

L(n, 0|µ,α) =
∏

i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(0|αj, 1)

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ,
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Eliminate dependence on the nuisance parameters
Likelihood ratio!

λ(µ) :=
L(µ, ˆ̂θ)
L(µ̂, θ̂)

.

Denominator L(µ̂, θ̂) is computed for the values of µ and θ which jointly maximize the
likelihood function.

Profiling: eliminating the dependence on the nuisance parameters by taking their conditional
maximum likelihood estimate
Bayesians normally marginalize (integrate) rather than profiling (see Demortier, 2002)

The maximum of the likelihood ratio yields the point estimate for µ
The second derivative of the maximum likelihood ratio yields intervals on the parameter µ

Tomorrow: the tricky cases (e.g. point estimate near the physical range allowed for the parameter)

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ,
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What do I need to profile?

The likelihood ratio λ(µ) =
L(µ, ˆ̂θ(µ))

L(µ̂,θ̂)

Conceptually, you can run the experiment many times (e.g. toys) and record the value of the
test statistic

The test statistic can therefore be seen as a distribution

Asymptotically, λ(µ) ∼ exp
[
− 1

2χ
2
](

1 +O( 1√
N
)
)

(Wilks Theorem, under some regularity
conditions—continuity of the likelihood and up to 2nd derivatives, existence of a maximum,
etc)

The χ2 distribution depends only on a single parameter, the number of degrees of freedom
It follows that the test statistic is independent of the values of the nuisance parameters
Useful: you don’t need to make toys in order to find out how is λ(µ) distributed!
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What is a nuisance parameter?

Sometimes the classification into POI and nuisance parameter washes out

Maybe you data and your method can provide information on a systematic uncertainty

Plot from doi:10.1007/JHEP12(2012)105
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Constrained nuisance parameters

More often, the analysis is not sensitive enough to treat an uncertainty as POI and measure it

The fit can still constrain the nuisance parameter that is profiled
Indirectly provides information about your estimate of that parameter before the fit

Over- or under-estimate θ before the fit
See a best fit value for θ that doesn’t match very well with the prefit value

Quote, for each nuisance parameter, two important quantities
Pull: the difference of the post-fit and pre-fit values of the parameter, normalized to the pre-fit
uncertainty: pull := θ̂−θ

δθ
Constraint: the ratio between the post-fit and the pre-fit uncertainty in the nuisance parameter.
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Pulls and Constraints

Pull: the difference of the post-fit and pre-fit values of the parameter, normalized to the pre-fit
uncertainty: pull := θ̂−θ

δθ

Constraint: the ratio between the post-fit and the pre-fit uncertainty in the nuisance
parameter.
Spot easily possible issues in the fit

θ pulled too much may be a hint that our estimate of the pre-fit value was not reasonable
θ constrained too much indicates that the data contain enough information to improve the precision in
the nuisance parameter with respect to our original estimate, which may or may not make sense.
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Question time, pulls and constraints

What is more worrying, a small pull with a small constraint, or a large pull with a strong
constraint? Question time: Pulls and Constraints

A pull with very small constraint: θprefit = 0 ± 1, θpostfit = 1 ± 0.9

The same pull with a strong constraint: θprefit = 0 ± 1, θpostfit = 1 ± 0.2

A way of estimating if a shift is significant is to compare the shift with its uncertainty

For independent measurements, the compatibility C is

C = ∆θ/σ∆θ =
θ2 − θ1√
σ2

1 + σ2
2

We would conclude that the first case C = 0.74, for the second one C = 0.98 (larger, still
within uncertainty)

However, these are not independent measurements!

The formula is therefore
C = ∆θ/σ∆θ =

θ2 − θ1√
σ2

1 − σ2
2

For the first case, C = 2.29, for the second case C = 1.02

The same pull is more significant if there is (almost no) constraint!!!
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Impacts
Impact of θ on the post-fit signal strength permits to obtain a ranking of the nuisance
parameters in terms of their effect on the signal strength

Fix each nuisance parameter to its post-fit value θ̂ plus/minus its pre-fit (post-fit) uncertainty δθ (δθ̂)
Reperform the fit for µ
Compute the impact as the difference between the original fitted signal strength and the refitted signal
strength.

Results on Asimov dataset (replacing the data with the expectations from simulated events) is
expected to give “perfect” results
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Breakdown of systematic uncertainties
What’s the amount of uncertainty that is impotable to a given set of systematic effects?

The modern expression of Fisher’s formalization of the ANOVA concept
“the constituent causes fractions or percentages of the total variance which they together produce”
(Fisher, 1919)
“the variance contributed by each term, and by which the residual variance is reduced when that term
is removed” (Fisher, 1921)

Breakdown the contributions
Freeze a set of uncertainties θi to their post-fit value
Repeat the fit to extract a new (smaller) uncertainty on µ
Obtain the contribution of θi to the overall uncertainty as squared difference betwee the full and
reduced uncertainties
Statistical uncertainty obtained by freezing all nuisance parameters

Toy data
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From sidebands to systematic uncertainties

Measure a background rate in a sideband, use the estimate in the signal region

As described, let’s model our estimation problem using profile likelihoods
L(n,α0|µ,α) =

∏
i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(α0
j |αj, δαj)

λ(µ) =
L(µ, ˆ̂αµ)

L(µ̂,α̂)

Sideband measurement

Lfull(s, b) = P(NSR|s + b)× P(NCR|τ̃ · b)

Subsidiary measurement of the background rate:
8% systematic uncertainty on the MC rates
b̃: measured background rate by MC simulation
G(b̃|b, 0.08): our

Lfull(s, b) = P(NSR|s + b)× G(b̃|b, 0.08)

Vischia Statistics for HEP March 16th and 18th, 2022 101 / 190



Caveats on modelling theory uncertainties (P.V. at Benasque 2018)
Cross section uncertainty: easy, assuming a gaussian for the constraint term
Lfull(s, b) = P(NSR|s + b)× G(b̃|b, 0.08)
Factorization scale: what distribution F is meant to model the constraint???
Lfull(s, b) = P(NSR|s + b(αFS)×F(α̃FS|αFS)

“Easy” case, there is a single parameter αFS, clearly connected to the underlying physics model
Hadronization/fragmentation model: run different generators, observing different results

Difficult! Not just one parameter, how do you model it in the likelihood?
2-point systematics: you can evaluate two (three, four...) configurations, but underlying reason for
difference unclear
Often define empirical response function

Counting experiment: easy extend to other
generators

There must exist a value of α corresponding
to SHERPA

Shape experiment: ouch!

SHERPA is in general not obtainable as an
interpolation of PYTHIA and HERWIG

Graphics from W. Verkerke
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Define a constraint term

Attempting to quantify our knowledge of the models

There is no single parameter, difficult to model the differences within a single underlying
model

Which of these is the “correct” one?

Graphics from W. Verkerke

Vischia Statistics for HEP March 16th and 18th, 2022 103 / 190



Solving the delta functions issue: discrete profiling

Label each shape with an integer, and use the integer as nuisance parameter

Can obtain the original log-likelihood as an envelope of different fixed discrete nuisance
parameter values
How do you define the various shapes?

Need many additional generators!
Interpolation unlikely to work (SHERPA is not midway between PYTHIA and POWHEG)

From arXiv:1408.6865
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The issue of over-constraining

How to interpret
constraints?

Not as measurements
Correlations in the fit
make interpretation
complicated

Avoid statements when
profiling as a nuisance
parameter

Graphics from ATLAS and W. Verkerke, as far as I remember
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Systematic uncertainties and closure tests

Closure tests are alternative procedures you can use to check if your measurement is robust
E.g. insensitive to systematic effects
Usually compare alternative result with nominal result (GoF test) to decide if closure test passed

Closure tests are PASS/FAIL tests
Correct course of action: if closure test fails, then there is a mistake in the tested procedure,
therefore modify/improve the procedre

If the alternative procedure highlights e.g. a recalibration to be done, then recalibrate (i.e. use the
better procedure)

Wrong course of action: if closure test fails, add discrepancy as uncertainty
The sentence “The closure test shows a 10% discrepancy, and we consequently assign it as
systematic uncertainty” is pure BS (although you’ll sadly find it in many published papers)

In general, if a closure test fails, always prioritize a mitigation or suppression of the effect by
improveming your analysis methods

A systematic should be added only as a very very last resort
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Confidence Intervals in nontrivial cases
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Confidence intervals!

Confidence interval for θ with probability content β
The range θa < θ < θb containing the true value θ0 with probability β
The physicists sometimes improperly say the uncertainty on the parameter θ

Given a p.d.f., the probability content is β = P(a ≤ X ≤ b) =
∫ b

a f (X|θ)dX

If θ is unknown (as is usually the case), use auxiliary variable Z = Z(X, θ) with p.d.f. g(Z)
independent of θ
If Z can be found, then the problem is to estimate interval P(θa ≤ θ0 ≤ θb) = β

Confidence interval
A method yielding an interval satisfying this property has coverage

Example: if f (X|θ) = N(µ, σ2) with unknown
µ, σ, choose Z = X−µ

σ

Find [c, d] in
β = P(c ≤ Z ≤ d) = Φ(d)− Φ(c) by finding
[Zα, Zα+β ]

Infinite interval choices: here central interval
α = 1−β

2

Plot from James, 2nd ed.
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Confidence intervals in many dimensions

Generalization to multidimensional θ is immediate
Probability statement concerns the whole θ, not the individual θi

Shape of the ellipsoid governed by the correlation coefficient (or the mutual information)
between the parameters
Arbitrariety in the choice of the interval is still present

Plot from James, 2nd ed.
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Coverage

Coverage probability of a method for calculating a confidence interval [θ1, θ2]:
P(θ1 ≤ θtrue ≤ θ2)

Fraction of times, over a set of (usually hypothetical) measurements, that the resulting interval covers
the true value of the parameter
Can sample with toys to study coverage

Coverage is not a property of a specific confidence interval!
Coverage is a property of the method you use to compute your confidence interval

It is calculated from the sampling distribution of your confidence intervals

The nominal coverage is the value of confidence level you have built your method around
(often 0.95)
When actually derive a set of intervals, the fraction of them that contain θtrue ideally would be
equal to the nominal coverage

You can build toy experiments in each of whose you sample N times for a known value of θtrue
You calculate the interval for each toy experiment
You count how many times the interval contains the true value

Nominal coverage (CL) and the actual coverage (Co) observed with toys should agree
If all the assumptions you used in computing the intervals are valid
If they don’t agree, it might be that Co < CL (undercoverage) or Co > CL (overcoverage)
It’s OK to strive to be conservative, but one might be unnecessarily lowering the precision of the
measurement
When Co! = CL you usually want at least a convergence to equality in some limit
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Coverage: the binomial case

For discrete distributions, the discreteness induces steps in the probability content of the
interval

Continuous case: P(a ≤ X ≤ b) =
∫ b

a f (X|θ)dX = β

Discrete case: P(a ≤ X ≤ b) =
∑b

a f (X|θ)dX ≤ β

Binomial: find interval (rlow, rhigh) such that
∑r=rhigh

r=rlow

( r
N

)
pr(1 − p)N−r ≤ 1 − α

Also,
( r

N

)
computationally taxing for large r and N

Approximations are found in order to deal with the problem

Gaussian approximation: p ± Z1−α/2

√
p(1−p)

N

Clopper Pearson: invert two single-tailed binomial tests∑N
r=0
( r

N

)
pn(1 − plow)

N−n ≤ α/2∑N
r=0
( r

N

)
pr(1 − phigh)

N−r ≤ α/2
Single-tailed → use α/2 instead of α
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Coverage: the binomial case

Gaussian approximation: p ± Z1−α/2

√
p(1−p)

N

Clopper Pearson: invert two single-tailed binomial tests, designed to overcover∑N
r=0
( r

N

)
pn(1 − plow)

N−n ≤ α/2∑N
r=0
( r

N

)
pr(1 − phigh)

N−r ≤ α/2
Single-tailed → use α/2 instead of α

This afternoon we will study the coverage of intervals from a gaussian approximation and
from the Clopper-Pearson method

We will also study the coverage of intervals obtained from crossings with ∆lnL

Question time: Coverage
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Coverage, N = 20
Gaussian approximation bad for small sample sizes
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Coverage, N = 1000
Gaussian approximation bad near p = 0 and p = 1 even for large sample sizes
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Confidence belts: the Neyman construction

Unique solutions to finding confidence intervals are infinite
Central intervals, lower limits, upper limits, etc

Let’s suppose we have chosen a way

Build horizontally: for each (hypothetical) value of θ, determine t1(θ), t2(θ) such that∫ t2
t1

P(t|θ)dt = β

Read vertically: from the observed value t0, determine [θL, θU ] by intersection
The resulting interval might be disconnected in severely non-linear cases

Probability content statements to be seen in a frequentist way
Repeating many times the experiment, the fraction of [θL, θ

U ] containing θ0 is β

Plot from James, 2nd ed.
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Upper limits for non-negative parameters
Gaussian measurement ( variance 1) of a non-negative parameter µ ∼ 0 (physical bound)
Individual prescriptions are self-consistent

90% central limit (solid lines)
90% upper limit (single dashed line)

Other choices are problematic (flip-flopping): never choose after seeing the data!
“quote upper limit if xobs is less than 3σ from zero, and central limit above” (shaded)
Coverage not guaranteed anymore (see e.g. µ = 2.5)

Unphysical values and empty intervals: choose 90% central interval, measure xobs = −2.0
Don’t extrapolate to an unphysical interval for the true value of µ!
The interval is simply empty, i.e. does not contain any allowed value of µ
The method still has coverage (90% of other hypothetical intervals would cover the true value)

Plot from James, 2nd ed.
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Unphysical values: Feldman-Cousins

The Neyman construction results in guaranteed coverage, but choice still free on how to fill
probability content

Different ordering principles are possible (e.g. central/upper/lower limits)

Unified approach for determining interval for µ = µ0: the likelihood ratio ordering principle

Include in order by largest ℓ(x) =
P(x|µ0)
P(x|µ̂)

µ̂ value of µ which maximizes P(x|µ) within the physical region
µ̂ remains equal to zero for µ < 1.65, yielding deviation w.r.t. central intervals

Minimizes Type II error (likelihood
ratio for simple test is the most
powerful test)

Solves the problem of empty
intervals

Avoids flip-flopping in choosing an
ordering prescription

Plot from James, 2nd ed.
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Feldman-Cousins in HEP
The most typical HEP application of F-C is confidence belts for the mean of a Poisson
distribution
Discreteness of the problem affects coverage
When performing the Neyman construction, will add discrete elements of probability
The exact probability content won’t be achieved, must accept overcoverage∫ x2

x1

f (x|θ)dx = β →
U∑

i=L

P(xi|θ) ≥ β

Overcoverage larger for small values of µ (but less than other methods)

Plot from James, 2nd ed.
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Bayesian intervals

Often numerically identical to frequentist confidence intervals
Particularly in the large sample limit

Interpretation is different: credible intervals

Posterior density summarizes the complete knowledge about θ

π(θ|X) =

∏N
i=1 f (Xi, θ)π(θ)∫ ∏N
i=1 f (Xi, θ)π(θ)dθ

Sometimes you may want to summarize the prior with estimates of its location and of its
dispersion

For the location, you can use mode or median (see tomorrow’s lecture)

An interval [θL, θU ] with content β defined by
∫ θU

θL
π(θ|X)dθ = β

Bayesian statement! P(θL < θ < θU) = β
Again, non unique

Issues with empty intervals don’t arise, though, because the prior takes care of defining the
physical region in a natural way!

But this implies that central intervals cannot be seamlessly converted into upper limits
Need the notion of shortest interval
Issue of the metric (present in frequentist statistic) solved because here the preferred metric is
defined by the prior

Vischia Statistics for HEP March 16th and 18th, 2022 119 / 190



Bayesian intervals and coverage
What about computing the frequentist coverage for Bayesian intervals?
Question time: Coverage Bayes

Even if you are not interested in frequentist methods, it can be useful! Certainly it doesn’t hurt
Knowing the sampling properties of a method can always give insights or work as a
cross-check of the method
Particularly given that typically Bayesian and frequentist answers tend to converge in the
high-N limit

Except for hypothesis tests, we’ll find out later today

Image from the Statistical Statistics Memes Facebook Page
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Test of Hypotheses
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What is an hypothesis...

Is our hypothesis compatible with the experimental data? By how much?
Hypothesis: a complete rule that defines probabilities for data.

An hypothesis is simple if it is completely specified (or if each of its parameters is fixed to a single
value)
An hypothesis is complex if it consists in fact in a family of hypotheses parameterized by one or more
parameters

“Classical” hypothesis testing is based on frequentist statistics
An hypothesis—as we do for a parameter θ⃗true—is either true or false. We might improperly say that
P(H) can only be either 0 or 1
The concept of probability is defined only for a set of data x⃗

We take into account probabilities for data, P(⃗x|H)

For a fixed hypotesis, often we write P(⃗x; H), skipping over the fact that it is a conditional probability
The size of the vector x⃗ can be large or just 1, and the data can be either continuos or discrete.
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...and how do we test it?

The hypothesis can depend on a parameter
Technically, it consists in a family of hypotheses scanned by the parameter
We use the parameter as a proxy for the hypothesis, P(⃗x; θ) := P(⃗x; H(θ).

We are working in frequentist statistics, so there is no P(H) enabling conversion from P(⃗x|θ)
to P(θ|⃗x).
Statistical test

A statistical test is a proposition concerning the compatibility of H with the available data.
A binary test has only two possible outcomes: either accept or reject the hypothesis
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Testing an hypothesis H0...
H0 is normally the hypothesis that we assume true in absence of further evidence
Let X be a function of the observations (called “test statistic”)
Let W be the space of all possible values of X, and divide it into

A critical region w: observations X falling into w are regarded as suggesting that H0 is NOT true
A region of acceptance W − w

The size of the critical region is adjusted to obtain a desired level of significance α
Also called size of the test
P(X ∈ w|H0) = α
α is the (hopefully small) probability of rejecting H0 when H0 is actually true

Once W is defined, given an observed value x⃗obs in the space of data, we define the test by
saying that we reject the hypothesis H0 if x⃗obs ∈ W.
If x⃗obs is inside the critical region, then H0 is rejected; in the other case, H0 is accepted

In this context, accepting H0 does not mean demonstrating its truth, but simply not rejecting it
Choosing a small α is equivalent to giving a priori preference to H0!!!
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...while introducing some spice in it
The definition of W depends only on its area α, without any other condition

Any other area of area α can be defined as critical region, independently on how it is placed with
respect to x⃗obs
In particular, for an infinite number of choices of W , the point x⃗obs—which beforehand was situated
outside of W—is now included inside the critical region
In this condition, the result of the test switches from accept H0 to reject H0

To remove or at least reduce this arbitrariness in the choice of W, we introduce the alternative
hypothesis, H1
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Choose reasonable regions
Choose a critical region so that P(⃗x ∈ W|H0) is α under H0, and as large as possible under H1

Choice of regions is somehow arbitrary, and many choices are not more justified than others
In Physics, after ruling out an hypothesis we aim at substituting it with one which explains
better the data

Often H1 becomes the new H0, e.g. from (H0:noHiggs, H1 =Higgs) to (H1:Higgs ,
H1:otherNewPhysics)
We can use our expectations about reasonable alternative hypotheses to design our test to exlude H0
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Could not find source for the meme

Vischia Statistics for HEP March 16th and 18th, 2022 126 / 190



A small example

H0: pp → pp elastic scattering

H1: pp → ppπ0

Compute the missing mass M (as
total rest energy of unseen
particles)

Under H0, M = 0

Under H1, M = 135 MeV

Choose H0 Choose H1
H0 is true 1 − α α (Type I error)
H1 is true β (Type II error) 1 − β (power)

Plot from James, 2nd ed.
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A longer example

Student’s t distribution

Test the mean!

Will not run it this afternoon, you
can check it at home hyptest.ipynb
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Basic hypothesis testing – 4
The usefulness of the test depends on how well it discriminates against the alternative
hypothesis
The measure of usefulness is the power of the test

P(X ∈ w|H1) = 1 − β
Power (1 − β) is the probabiliity of X falling into the critical region if H1 is true
P(X ∈ W − w|H1) = β
β is the probability that X will fall into the acceptance region if H1 is true

NOTE: some authors use β where we use 1 − β. Pay attention, and live with it.
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Comparing tests

For parametric (families of) hypotheses, the power depends on the parameter
H0 : θ = θ0
H1 : θ = θ1
Power: p(θ1) = 1 − β

Generalize for all possible alternative hypotheses: p(θ) = 1 − β(θ)
For the null, p(θ0) = 1 − β(θ0) = α

Plot from James, 2nd ed.
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Properties of tests
More powerful test: a test which at least as powerful as any other test for a given θ
Uniformly more powerful test: a test which is the more powerful test for any value of θ

A less powerful test might be preferrable if more robust than the UMP3

If we increase the number of observations, it makes sense to require consistency
The more observations we add, the more the test distinguishes between the two hypotheses
Power function tends to a step function for N → ∞

Biased test: argmin(p(θ)) ̸= θ0

More likely to accept H0 when it is false than
when it is true

Big no-no for θ0 vs θ1]

Still useful (larger power) for θ0 vs θ2

Plot from James, 2nd ed.
3Robust: a test with low sensitivity to unimportant changes of the null hypothesis
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Play with Type I (α) and Type II (β) errors freely

Image from the Statistical Statistics Memes Facebook Page
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Play with Type I (α) and Type II (β) errors freely

Comparing only based on the power curve
is asymmetric w.r.t. α
For each value of α = p(θ0), compute
β = p(θ1), and draw the curve

Unbiased tests fall under the line 1 − β = α
Curves closer to the axes are better tests

Ultimately, though, choose based on the
cost function of a wrong decision

Bayesian decision theory

Plot from James, 2nd ed.
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Find the most powerful test

Testing simple hypotheses H0 vs H1, find the best critical region

Maximize power curve 1 − β =
∫

wα
f (X|θ1)dX, given α =

∫
wα

f (X|θ0)dX

The best critical region wα consists in the region satisfying the likelihood ratio equation

ℓ(X, θ0, θ1) :=
f (X|θ1)

f (X|θ0)
≥ cα

The criterion, called Neyman-Pearson test, is therefore
If ℓ(X, θ0, θ1) > cα then choose H1
If ℓ(X, θ0, θ1) ≤ cα then choose H0

The likelihood ratio must be calculable for any X
The hypotheses must therefore be completely specified simple hypotheses
For complex hypotheses, ℓ is not necessarily optimal
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Demonstrating the Neyman-Pearson lemma

We want to prove that ℓ(X, θ0, θ1) :=
f (X|θ1)
f (X|θ0)

≥ cα gives the best acceptance region

Image from Evan Vucci, Shutterstock, meme is mine
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Demonstrating the Neyman-Pearson lemma
We want to prove that ℓ(X, θ0, θ1) :=

f (X|θ1)
f (X|θ0)

≥ cα gives the best region
Critical region from NP (red contour), demonstrate that any other region (blue contour) has less power
Take out a wedge region and add it e.g. to the other side
Regions must have equal area under H0 (tests with same size)
Being on different sides of the red contour, under H1 data is less likely in the added region than in the
removed one
Less probability to reject the null → test based on the new contour is less powerful!
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Intermezzo: the Wilks theorem

The likelihood ratio is commonly used
As any test statistic in the market, in order to select critical regions based on confidence
levels it is necessary to know its distribution

Run toys to find its distribution (very expensive if you want to model extreme tails)
Find some asymptotic condition under which the likelihood ratio assumes a simple known form

Wilks theorem: when the data sample size tends to ∞, the likelihood ratio tends to
χ2(N − N0)

Exercise yesterday afternoon
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Verifying the Wilks theorem: N=2

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Verifying the Wilks theorem: N=10

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Verifying the Wilks theorem: N=100

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Bayesian model selection — two models...

The parameter θ might be predicted by two models M0 and M1: P(θ|⃗x,M) =
P(⃗x|θ,M)P(θ|M)

P(⃗x|M)

A step further than yesterday in writing down the Bayes theorem: now multiple conditioning
P(⃗x|M) =

∫
P(⃗x|θ,M)P(θ|M)dθ: Bayesian evidence or model likelihood

Posterior for M0: P(M0 |⃗x) = P(⃗x|M0)π(M0)
P(⃗x)

Posterior for M1: P(M1 |⃗x) = P(⃗x|M1)π(M1)
P(⃗x)

The odds indicate relative preference of one model over the other

Posterior odds: P(M0 |⃗x)
P(M1 |⃗x)

=
P(⃗x|M0)π(M0)
P(⃗x|M1)π(M1)

Posterior odds = Bayes Factor × prior odds

B01 :=
P(⃗x|M0)
P(⃗x|M1)

Various slightly different scales for the Bayes Factor
Interesting: deciban, unit supposedly theorized by Turing (according to IJ Good) as the smallest
change of evidence human mind can discern

Jeffreys
Kass and Raftery Trotta

Images from Wikipedia and from Roberto Trotta, Chair Lemaitre Lectures 2018
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Bayesian model selection — ...with many models

Image from Roberto Trotta, Chair Lemaitre Lectures 2018
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Bayesian model selection — Discourage nonpredictive models

The Bayes Factor also takes care of penalizing excessive model complexity

Highly predictive models are rewarded, broadly-non-null priors are penalized

From Roberto Trotta, Chair Lemaitre Lectures 2018
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Bayes vs p-values: the Jeffreys-Lindley paradox
Data X (N data sampled from f (x|θ))<

H0:θ = θ0. Prior: π0 (non-zero for point mass, Dirac’s δ, counting measure)
H1: θ! = θ0. Prior: π1 = 1 − π0 (usual Lebesgue measure)

Conditional on H1 being true:
Prior probability density g(θ)
If f (x|θ) ∼ Gaus(θ, σ2), then the sample mean X̄ ∼ Gaus(θ, σtot = σ/N)

Likelihood ratio of H0 to best fit for H1: λ =
L(θ0)

L(θ̂)
= exp(−Z2/2) ∝ σtot

τ
B01; Z := θ̂−θ0

σtot

λ disfavours the null hypothesis for large significances (small p-values), independent of sample size
B01 includes σtot/τ (Ockham Factor, penalizing H1 for imprecise determination of θ), sample
dependent!

For arbitrarily large Z (small p-values), λ disfavours H0, while there is always a N for which B01
favours H0 over H1

Image from Cousins, doi:10.1007/s11229-014-0525-z
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2016: breaking announcement by the American Statistical Association

doi:10.1080/00031305.2016.1154108
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Unprecedented policy statement
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I have an excess, do I?

Plot from https://cds.cern.ch/record/2230893
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Look only at the null hypothesis!

Probability of obtaining a fluctuation with test statistic qobs or larger, under the null hypothesis
H0

Distribution of test statistic under H0 either with toys or asymptotic approximation (if Nobs is large, then
q ∼ χ2(1))
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P(Q>=6) = 0.005

Plots from Vischia—in preparation with Springer
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And the sigmas?

Just an artifact to convert p-values to easy-to-remember O(1) numbers
1σ: p = 0.159
3σ: p = 0.00135
5σ: p = 0.000000285

No approximation involved, just a change of units to gaussian variances: one-sided tail area
1

2π

∫∞
x e−

t2
2 dt = p

p-value must be flat under the null, or interpretation is invalidated

HEP: usually interested in one-sided deviations (upper fluctuations)
Most other disciplines interested in two-sided effects (e.g. 2σ: p2sided = 0.05)

Left: ATLAS Collaboration, Right: https://saylordotorg.github.io/

Vischia Statistics for HEP March 16th and 18th, 2022 149 / 190

https://saylordotorg.github.io/


Back to ASA: the six statements

1 P-values can indicate how incompatible the data are with a specified statistical model.
2 P-values do not measure the probability that the studied hypothesis is true, or the probability

that the data were produced by random chance alone.
3 Scientific conclusions and business or policy decisions should not be based only on whether

a p-value passes a specific threshold.
The widespread use of “statistical significance” (generally interpreted as p ≤ 0.05) as a license for
making a claim of a scientific finding (or implied truth) leads to considerable distortion of the scientific
process.

4 Proper inference requires full reporting and transparency
5 A p-value, or statistical significance, does not measure the size of an effect or the importance

of a result.
6 By itself, a p-value does not provide a good measure of evidence regarding a model or

hypothesis.
...supplement or even replace p-values with other approaches. These include methods that
emphasize estimation over testing, such as confidence, credibility, or prediction intervals; Bayesian
methods; alternative measures of evidence, such as likelihood ratios or Bayes Factors; and other
approaches such as decision-theoretic modeling and false discovery rates.

doi:10.1080/00031305.2016.1154108
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Responses to ASA statement: redefine pvalue threshold or not use it at all
Benjamin et al. (doi:/10.31234/osf.io/mky9j) proposed to switch to lower threshold (p < 0.005)

and not use it as criterion for publication

Wagenmakers (doi:/10.3758/BF03194105) proposed to switch to Bayesian criteria

Gelman (statmodeling.stat.columbia.edu) proposes to not limit ourselves to a single summary
statistic or threshold

“I put much of the blame on statistical education, for two reasons”
“First [...] we typically focus on the choice of sample size, not on the importance of valid and reliable
measurements.”
“Second, it seems to me that statistics is often sold as a sort of alchemy that transmutes randomness
into certainty, an uncertainty laundering [...] Just try publishing a result with p = 0.20”
“In summary, I agree with most of the ASA’s statement on p-values but I feel that the problems are
deeper, and that the solution is not to reform p-values or to replace them with some other statistical
summary or threshold, but rather to move toward a greater acceptance of uncertainty and embracing
of variation.”
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Reproducibility crysis: is it a thing?

It seems so: The Bayer Study (https://www.nature.com/articles/nrd3545)

“Irreproducibility was high both when Bayer scientists applied the same experimental procedures as
the original researchers and when they adapted their approaches to internal needs (for example, by
using different cell lines).”
“High-impact journals did not seem to publish more robust claims, and, surprisingly, the confirmation
of any given finding by another academic group did not improve data reliability.”
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The funny bit

Ioannidis (doi:/10.1371/journal.pmed.0020124) identifies several causes mostly linked to
scientists’ own biases

Investigator prejudice, incorrect statistical methods, competition in hot fields, publishing bias

Then Ioannidis got accused of the same issues, just last month
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Be on the safe side with your Higgs bosons

Goal since LEP: seamless transition between exclusion, observation, discovery (historically
for the Higgs)

Exclude Higgs as strongly as possible in its absence (in a region where we would be sensitive to its
presence)
Confirm its existence as strongly as possible in its presence (in a region where we are sensitive to its
presence)
Maintain Type I and Type II errors below specified (small) levels
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Exclusion regions

Composite hypothesis H(θ) (monodimensional)
Our tests work for simple hypotheses → make test of simple hypothesis H(θ = θi), scanning
values θi of θ

E.g., for the Higgs boson θ can be the cross section for a given mass

Calculate p-value for each test

Assume our target test size α = 0.05
Each hypothesis with pθ < α can be excluded at the 1 − α = 95% confidence level (CL)

The set of excluded hypotheses constitutes an exclusion region
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What’s the difference between these two statements?

Acceptance region: set of values of the test statistic for which we don’t reject H0 at
significance level α

100(1 − α)% Confidence interval: set of values of the parameter θ for which we don’t reject
H0 (if H0 is assumed true)
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Duality between hypothesis tests and confidence intervals

Meme generated with https://imgflip.com/memegenerator
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Beyond coverage: the CLs method

Identify observables, and a suitable test statistic Q
Define rules for exclusion/discovery, i.e. ranges of values of Q leading to various conclusions

Specify the significance of the statement, in form of confidence level (CL)

Confidence limit: value of a parameter (mass, xsec) excluded at a given confidence level CL
A confidence limit is an upper(lower) limit if the exclusion confidence is greater(less) than the
specified CL for all values of the parameter below(above) the confidence limit

The resulting intervals are neither frequentist nor bayesian!
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Testing hypotheses near the boundary: Zech

Example: Find a monotonic Q for increasing signal-like experiments (e.g. likelihood ratio)
CLs+b = Ps+b(Q ≤ Qobs)

Small values imply poor compatibility with S + B hypothesis, favouring B-only

Counting experiment: observe n events

Assume they come from Poisson processes: n ∼ Pois(s + b), with known b

Set limit on s given nobs

Exclude values of s for which P(n ≤ nobs|s + b) ≤ α (guaranteed coverage 1 − α)
b = 3, nobs = 0

Exclude s + b ≤ 3 at 95%CL
Therefore excluding s ≤ 0, i.e. all possible values of s (can’t distinguish b-only from very-small-s)

Zech: let’s condition on nb ≤ nobs (nb unknown number of background events)
For small nb the procedure is more likely to undercover than when nb is large, and the distribution of
nb is independent of s
P(n ≤ nobs|nb ≤ nobs, s + b) = ... =

P(n≤nobs|s+b)
P(n≤nobs|b)
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Get your confidence levels right

Find a monotonic Q for increasing signal-like
experiments (e.g. likelihood ratio)
CLs+b = Ps+b(Q ≤ Qobs)

Small values imply poor compatibility with S + B
hypothesis, favouring B-only

CLb = Pb(Q ≤ Qobs)
Large (close to 1) values imply poor compatibility with
B-only, favouring S + B

What to do when the estimated parameter is
unphysical?

The same issue solved by Feldman-Cousins
If there is also underfluctuation of backgrounds, it’s
possible to exclude even zero events at 95%CL!
It would be a statement about future experiments
Not enough information to make statements about the
signal

Normalize the S + B confidence level to the B-only
confidence level!

Plot from Read, CERN-open-2000-205
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Avoid issues at low signal rates

CLs :=
CLs+b

CLb

Exclude the signal hypothesis at confidence level CL if
1 − CLs ≤ CL
Ratio of confidences is not a confidence

The hypotetical false exclusion rate is generally less
than the nominal 1 − CL rate
CLs and the actual false exclusion rate grow more
different the more S + B and B p.d.f. become similar

CLs increases coverage, i.e. the range of parameters
that can be exclude is reduced

It is more conservative
Approximation of the confidence in the signal hypothesis
that might be obtained if there was no background

Avoids the issue of CLs+b with experiments with the
same small expected signal

With different backgrounds, the experiment with the
larger background might have a better expected
performance

Formally corresponds to have H0 = H(θ! = 0) and
test it against H1 = H(θ = 0)

Test inversion!

Dashed: CLs+b
Solid: CLs

S < 3: exclusion for a B-free search ≡ 0

Plot from Read, CERN-open-2000-205
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From a scan of CLs to a limit on a cross section

Scan the CLs test statistic as a function of the POI (typically the cross section modifier
µ = σobs/σpred)

Find its intersection with the desired confidence level

(eventually) convert the limit on µ back to a cross section

Image from the afternoon exercise on CLs
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From a limit on the cross section to hypothesis testing

Apply the CLs method to each Higgs mass hypothesis

Show the CLs test statistic for each value of the fixed hypothesis
Green/yellow bands indicate the ±1σ and ±2σ intervals for the expected values under B-only
hypothesis

Obtained by taking the quantiles of the B-only hypothesis

Plot from CMS Higgs discovery paper doi:10.1016/j.physletb.2012.08.021
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From a limit on the cross section to hypothesis testing

CLs limit on µ as a function of mass
hypothesis

p-value of excess

Fitted signal strength peaks at excess

Plot from ATLAS Higgs discovery paper doi:10.1016/j.physletb.2012.08.020
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That’s what we used for the Higgs discovery!

Apply the CLs method to each Higgs mass point
Green/yellow bands indicate the ±1σ and ±2σ intervals for the expected values under B-only
hypothesis

Obtained by taking the quantiles of the B-only hypothesis

Plot from Higgs discovery paper
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Deal with CLs!

This afternoon we’ll play with CLs!
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Quantifying excesses

Quantify the presence of the signal by using the background-only p-value
Probability that the background fluctuates yielding and excess as large or larger of the observed one

For the mass of a resonance, q0 = −2logL(data|0,θ̂0)

L(data|µ̂,θ̂)
, with µ̂ ≥ 0

Interested only in upwards fluctuation, accumulate downwards one to zero

Use pseudo-data to generate background-only Poisson counts and nuisance parameters θobs
0

Use distribution to evaluate tail probability p0 = P(q0 ≤ qobs
0 )

Convert to one-sided Gaussian tail areas by inverting p = 1
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Left plot by Pietro Vischia, right plot from ATL-PHYS-PUB-2011-011 and Higgs discovery paper
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Question time: Significance
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Fluctuations in HEP? The proposal of a 5σ criterion
Rosenfeld, 1968 (https://escholarship.org/uc/item/6zm2636q) Are there any Far-out Mesons
or Baryons?

“In summary of all the discussion abouve, I conclude that each of our 150,000 annual histograms is
capable of generating somewhere between 10 and 100 deceptive upward fluctuations [...] (we)
should expect several 4σ and hundreds of 3σ fluctuations”
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HEP has a history of unconfirmed effects
3.5σ (2005, CDF) in dimuon (candidate bottom squark, doi:/10.1103/PhysRevD.72.092003)

∼ 4σ (1996, Aleph) in four-jet (Higgs boson candidate, doi:/10.1007/BF02906976)
6σ (2004, H1) (narrow c̄ baryon state, doi:/10.1016/j.physletb.2004.03.012)

H1 speaks of “Evidence”, not confirmed.
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The revenge of the pentaquarks

9σ and 12σ (2015, LHCb): pentaquarks! (doi:/10.1103/PhysRevLett.115.072001)
Several cross-checks (fit to mass spectrum, fit with non-resonant components, evolution of complex
amplitute in Argand diagrams)
Mass measurement, soft statement: “Interpreted as resonant states they must have minimal quark
content of ccuud, and would therefore be called charmonium-pentaquark states.

One remark: quoting significances above about 5–6σ is meaningless
Asymptotic approximation not trustable (tail effects). Can run lots of toys but...
...cannot possibly trust knowing your systematic uncertainties to that level

Vischia Statistics for HEP March 16th and 18th, 2022 171 / 190

https://doi.org/10.1103/PhysRevLett.115.072001


The Look-elsewhere effect — 1
Searching for a resonance X of arbitrary mass

H0 = no resonance, the mass of the resonance is not defined (Standard Model)
H1 = H(M ̸= 0), but there are infinite possible values of M

Wilks theorem not valid anymore, no unique test statistic encompassing every possible H1
Quantify the compatibility of an observation with the B-only hypothesis

q0(m̂X) = maxmX q0(mX)

Write a global p-value as pglobal
b := P(q0(m̂X) > u) ≤ ⟨Nu⟩ + 1

2 P
χ2

1
(u)

u fixed confidence level
Crossings (Davis, Biometrika 74, 33–43 (1987)) , computable using pseudo-data (toys)

Plot from Gross-Vitells, 10.1140/epjc/s10052-010-1470-8
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The Look-elsewhere effect — 2

Ratio of local (excess right here) and global (excess anywhere) p-values: trial factor
Asymptoticly linear in the number of search regions and in the fixed significance level

Dashed red lines: prediction based on the formula with upcrossings
Blue: 106 toys (pseudoexperiments)

Here asymptotic means for increasingly smaller tail probabilities

Plot from Gross-Vitells, 10.1140/epjc/s10052-010-1470-8
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The Look-elsewhere effect, now also in 2D — 1
Extension to two dimensions requires using the theory of random fields

Excursion set: set of points for which the value of a field is larger than a threshold u
Euler characteristics interpretable as number of disconnected regions minus number of holes

Plot from Gross-Vitells, 10.1016/j.astropartphys.2011.08.005
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The Look-elsewhere effect, now also in 2D — 2

Asymptoticity holds also for the 2D effect, as desired
Dashed red lines: prediction based on the formula with upcrossings
Blue: 200k toys (pseudoexperiments)

Plot from Gross-Vitells, 10.1016/j.astropartphys.2011.08.005
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When there is no LEE, you still need to make sure your systematics are right

In 2011 OPERA (arXiv:1109.4897v1) reported superluminal neutrino speed, with 6.0σ
significance...

...but they had a loose cable connector (doi:/10.1007/JHEP10(2012)093)
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Deborah Mayo’s Severe Testing

Frequentist testing based on Type I and Type 2 error rates (D. Mayo “Statistical Inference as
Severe Testing”. Cambridge UP, 2018.)

Point-null avoided by considering H0 : µ ≤ µ0 vs H1 : µ > µ0

Generalize to test µ1 = (µ0 + γ), γ ≥ 0
Severe interpretation of negative results (SIN)

When H0 not rejected, define severity
SEV(µ ≤ µ1) = P(Q > Qobs;µ ≤ µ1false) = P(Q > Qobs;µ > µ1) > P(Q > Qobs;µ = µ1)
Low severity: your test is not capable of detecting a discrepancy even when if it existed, therefore
when not detected is’s poor evidence of its absence (low power)
High severity: your test is highly capable of detecting a discrepancy if it existed, therefore when not
detected is a good indication of its absence (high power)

Severe interpretation of rejection (SIR)
When H0 rejected, define severity
SEV(µ > µ1) = P(Q ≤ Qobs;µ > µ1false) = P(Q ≤ Qobs;µ ≤ µ1) > P(Q ≤ Qobs;µ = µ1)
Low severity: if probability of higher-than-observed Qobs is fairly high, then Qobs not a good indication
of effect
High severity: if probability of smaller-than-observed Qobs is very high, then such a large Qobs
indicates a real effect

Cousins (arXiv:2002.09713) seems to argue that current CL HEP practice is substantially
equivalent to Mayo’s severe testing

Very specific to HEP. Other disciplines should be worried, instead

Vischia Statistics for HEP March 16th and 18th, 2022 177 / 190

https://arxiv.org/abs/2002.09713


Truth and models: all models are wrong

Box (https://www.jstor.org/stable/2286841) warns that any model is an approximation
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Truth and models: HEP is special

Cousins (doi:/10.1007/s11229-014-0525-z) notes HEP is in a privileged position when
compared with social or medical sciences

Others (Gelman, Raftery, Berger, Bernardo) argue that a point null is impossible (at most
“small”)
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Ground truth, models, and point nulls

I think a point or almost-point null is related to our simplifications rather than with a claim on
reality
Some disciplines deal with phenomena which cannot (yet) be explained from first principles

Maybe one day we will have a full quasi-deterministic model of a whole body or brain
Certainly so far most models are attempts at finding a functional form for the relationship between two
variables

Some disciplines (HEP) have to do with phenomena which can be explained from first
principles

These principles are reasonable but not necessarily the best or the only possible ones
No guarantee that they reflect a universal truth
Arguing that the vast experimental agreement of the SM implies ground truth behaves based on our
principles sounds a bit wishful thinking
What can be claimed is that the vast experimental agreement warrants the use of point or quasi-point
nulls

Box’s view on models, and the Occam’s Razor, should still lead considerations on model
choices

A version of the Occam’s Razor is even implemented in Bayesian model selection

Still, to avoid interpreting fluctuations as real effects all disciplines should strive—when
possible—to describe causal relationships rather than correlations
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The χ2 distribution: why degrees of freedom?
Sample randomly from a Gaussian p.d.f., obtaining X1 y X2
Q = X2

1 + X2
2 (or in general Q =

∑N
i=1 X2

i ) is itself a random variable
What is P(Q ≥ 6)? Just integrate the χ2(N = 2) distribution from 6 to ∞

Depends only on N!
If we sample 12 times from a Gaussian and compute Q =

∑12
i=1 X2

i , then Q ∼ χ2(N = 12)

Theorem: if Z1, ..., ZN is a sequence of normal random variables, the sum V =
∑N

i=1 Z2
i is

distributed as a χ2(N)
The sum of squares is closely linked to the variance E[(X − µ)2] = E[X2] − µ2 from Eq. 18

The χ2 distribution is useful for goodness-of-fit tests that check how much two distributions
diverge point-by-point
It is also the large-sample limit of many distributions (useful to simplify them to a single
parameter)
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The χ2 distribution: goodness-of-fit tests 1/
Consider a set of M measurements {(Xi, Yi)}

Suppose Yi are affected by a random error representable by a gaussian with variance σi

Consider a function g(X) with predictive capacity, i.e. such that for each i we have g(Xi) ∼ Yi
Pearson’s χ2 function related to the difference between the prediction and the experimental
measurement in each point

χ2
P :=

M∑
i=1

[
Yi − g(Xi)

σi

]2

(19)

Neyman’s χ2 is a similar expression under some assumptions
If the gaussian error on the measurements is constant, it can be factorized
If Yi represent event counts Yi = ni, then the errors can be approximated with σi ∝

√
ni

χ2
N :=

M∑
i=1

(
ni − g(Xi)

)2

ni
(20)
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The χ2 distribution: goodness-of-fit tests 2/

If g(Xi) ∼ Yi (i.e. g(X) reasonably predicts the data), then each term of the sum is
approximately 1

Consider a function of χ2
N,P and of the number of measurements M

E[f (χ2
N,P,M)] = M

The function is analytically a χ2:

f (χ2
,M) =

2−
M
2

Γ
(

N
2

)χN−2e−
χ2
2 (21)

The cumulative of f is

1 − cum(f ) = P(χ2
> χ

2
obs|g(x) is the correct model) (22)

If the p.d.f. under the correct model describes the data well, then within the measured
uncertainty it should agree with the data...

For about 2/3 of the points, because σi represent 68.3% intervals

... and χ2 ≃ M
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The χ2 distribution: goodness-of-fit tests 3/

For a given M, the p.d.f. is known (χ2(M)) and the observed value can be computed and
compared with it
Cast the problem as an hypothesis test

Null hypothesis: there is no difference between prediction and observation (i.e. g fits well the data)
Alternative hypothesis: there is a significant difference between prediction and observation
Under the null, the sum of squares is distributed as a χ2(M)

p-values can be calculated by integration of the χ2 distribution

χ2M ≃ 1 ⇒ g(X) approximates well the data

Large χ2M >> 1 ⇒ issues in data or hypothesis (increases χ2), correlated measurements

Very small χ2M << 1 ⇒ overestimated σi, or cherrypicked/fraudulent data, or statistically improbable fluctuation
(23)
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The χ2 distribution: goodness-of-fit tests 4

How small/large is a small/large χ2?

Very subjective, you must decide by yourself

Think in terms of p-value: P(χ2 > χ2
obs|g(x) is the correct model)

0.001 reasonably bad, P(χ2,M) > 0.001 expected in 1/1000 cases
Often, failed test defined as the infamous P(χ2,M) < 0.05

Problem: the p-value must be calculated by integration

Can define reduced χ2 as χ2

M , and translate the previous equation:

χ2

M
∼ 1 ⇒ g(X) approximates well the data

χ2

M
>> 1 ⇒ poor model (increases χ2), or statistically improbable fluctuation

χ2

M
<< 1 ⇒ overestimated σi, or fraudulent data, or statistically improbable fluctuation

(24)

Question time: reduced χ2

It’s tempting but alone it’s misleading! Same χ2/M can lead to opposite answers!
For a χ2/M = 7/5, p-value p = 0.22 (reasonably good)
For a χ2/M = 70/50, p-value p = 0.03 (reasonably bad)

If you want to give the ratio, you should always either provide M or directly the p-value!
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The χ2 distribution: goodness-of-fit tests 3/

χ2(M) tends to a Normal distribution for M → ∞
Slow convergence
It is generally not a good idea to substitute a χ2 distribution with a Gaussian

The goodness of fit seen so far is valid only if the model (the function g(X)) is fixed

Sometimes the model has k free parameters that were not given and that have been fit to the
data
Then the observed value of χ2 must be compared with χ2(N′), with N′ = N − k degrees of
freedom

N′ = N − k are called reduced degrees of freedom
This however works only if the model is linear in the parameters
If the model is not linear in the parameters, when comparing χ2

obs with χ2(N − k) then the p-values
will be deceptively small!

Variant of the χ2 for small datasets: the G-test
g = 2

∑
Oijln(Oij/Eij)

It responds better when the number of events is low (Petersen 2012)
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Statistics is about answering questions
...and posing the questions in an appropriate way

Foundations
Mathematical definition of probability
Bayesian and Frequentist realizations

How wide is the table?: Point estimates and the method of maximum likelihood
Is it really that wide, or am I somehow uncertain about it?: Interval estimates

Maximum likelihood
Neyman construction
Feldman-Cousins ordering
Coverage

Is the table a standard-size ping-pong table or not? Testing hypotheses
Frequentist hypothesis testing, and some mention to the Bayesian one
I need no toy: the Wilks theorem
Upper limits and the CLs prescription

Can I decouple my result from my instrumentation? Unfolding
How can I exploit learning algorithms? Machine Learning

Machine learning is a well defined mathematical technique
Used in many flavours across all the spectrum of tasks in HEP

Are you satisfied? Check your email for the link to the questionnaire about the course!
This helps me a lot improving the course over the years!
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I hope this course has helped in broadening the spectrum of techniques you will consider
using in the future
Or at least that it has clarified some of the underlying concepts for techniques you already
use!

Image from the Statistical Statistics Memes Facebook Page
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THANK YOU VERY MUCH FOR
ATTENDING!!

This course has already improved on the fly thanks to you!
I’ll take any further feedback and trasforming into improvements for the

next edition!
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