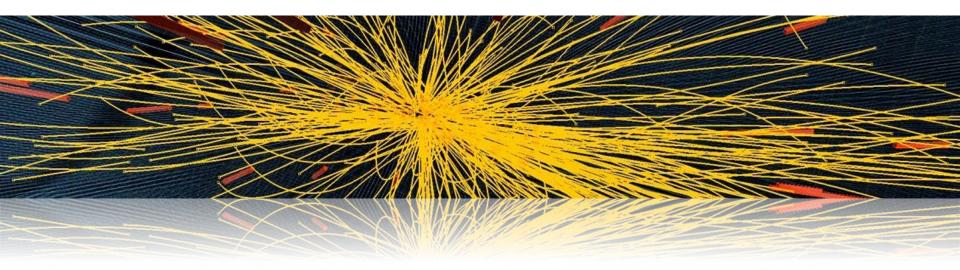
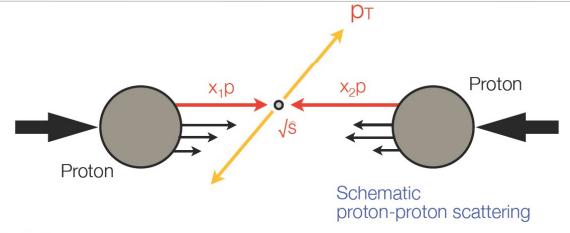
Course on Physics at the LH

Lecture/2

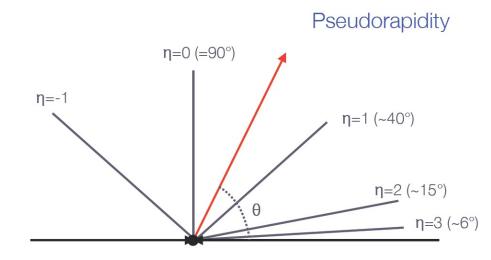

Introduction to collisions at LHC

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia Joao Varela Lisbon, PORTUGAL MARCH – MAY 2022

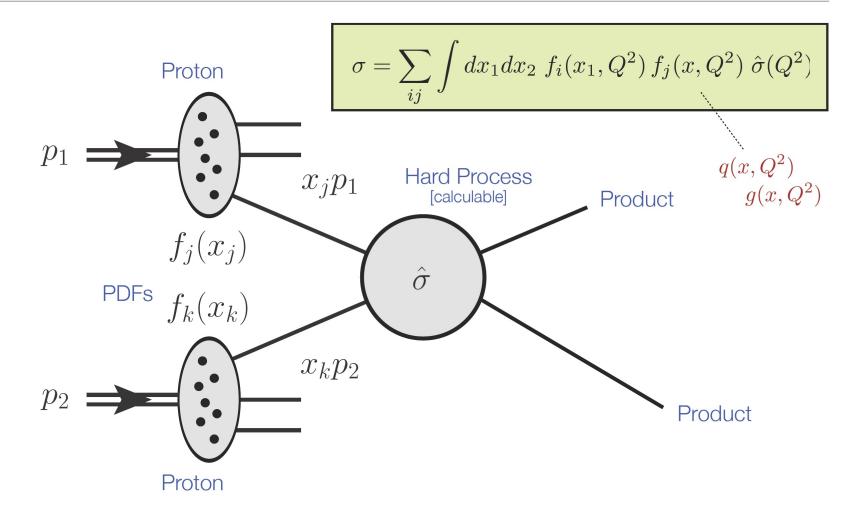

Introduction to collisions at LHC

- 1. Hadron interactions
- 2. QCD and parton densities
- 3. Monte Carlo generators
- 4. Luminosity and cross-section measurements
- 5. Minimum bias events
- 6. Jet physics

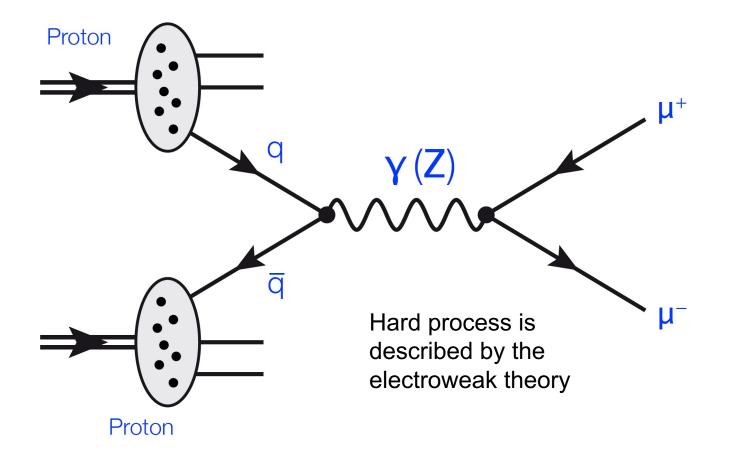
Hadron Interactions

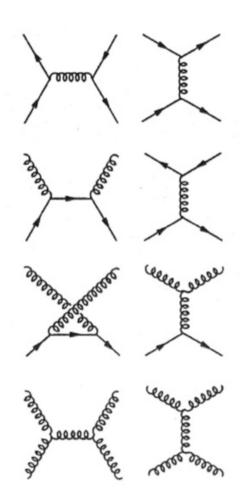


Kinematical variables

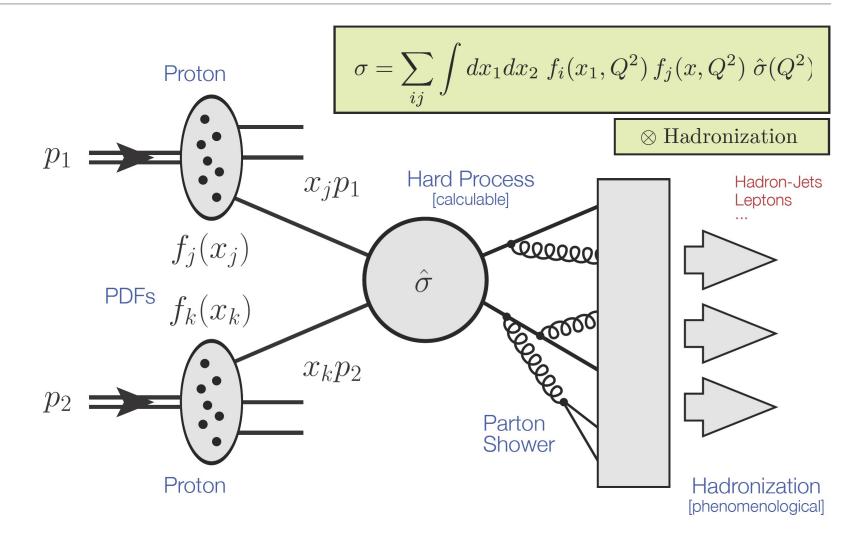


Relevant kinematic variables:

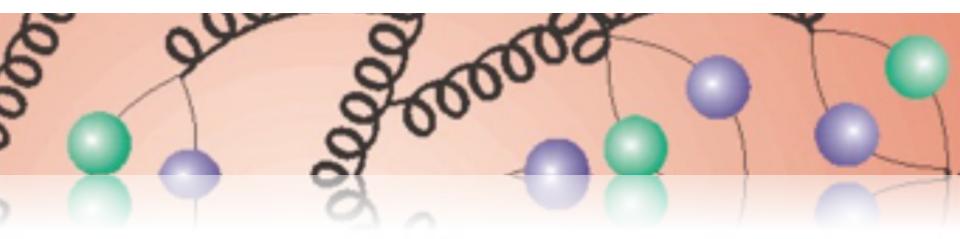

- Transverse momentum: pT
- Rapidity: $y = \frac{1}{2} \cdot \ln (E p_z)/(E + p_z)$
- Pseudorapidity: $\eta = -\ln \tan \frac{1}{2}\theta$
- Azimuthal angle: ϕ


Proton-Proton Scattering

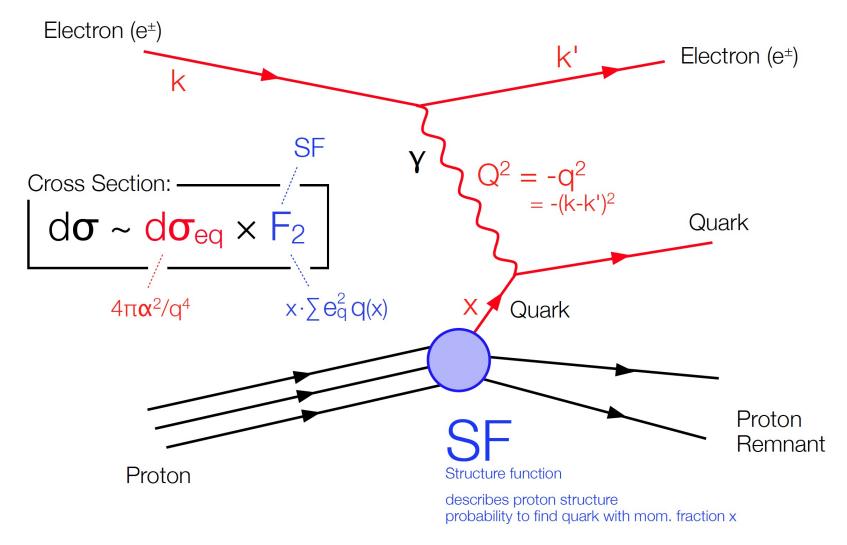
Example: Drell-Yan Process

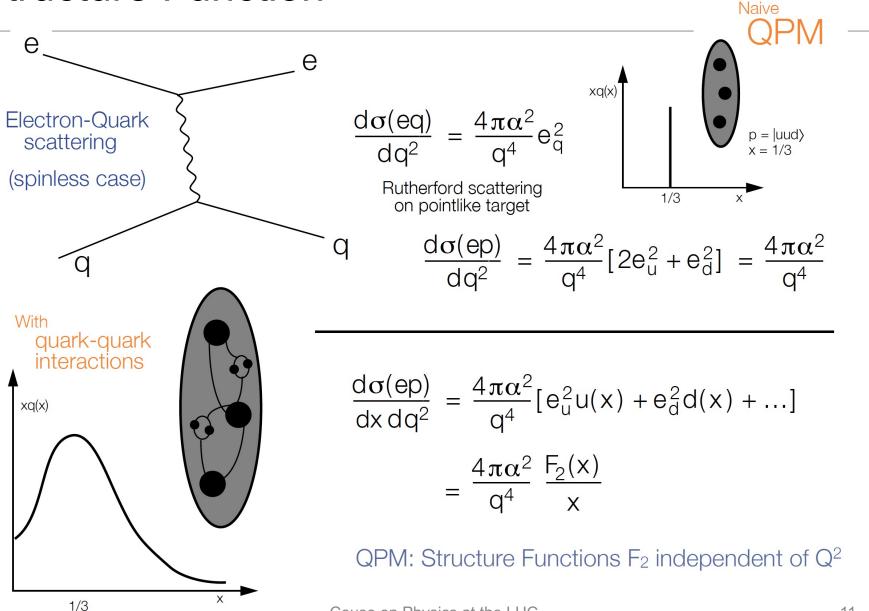


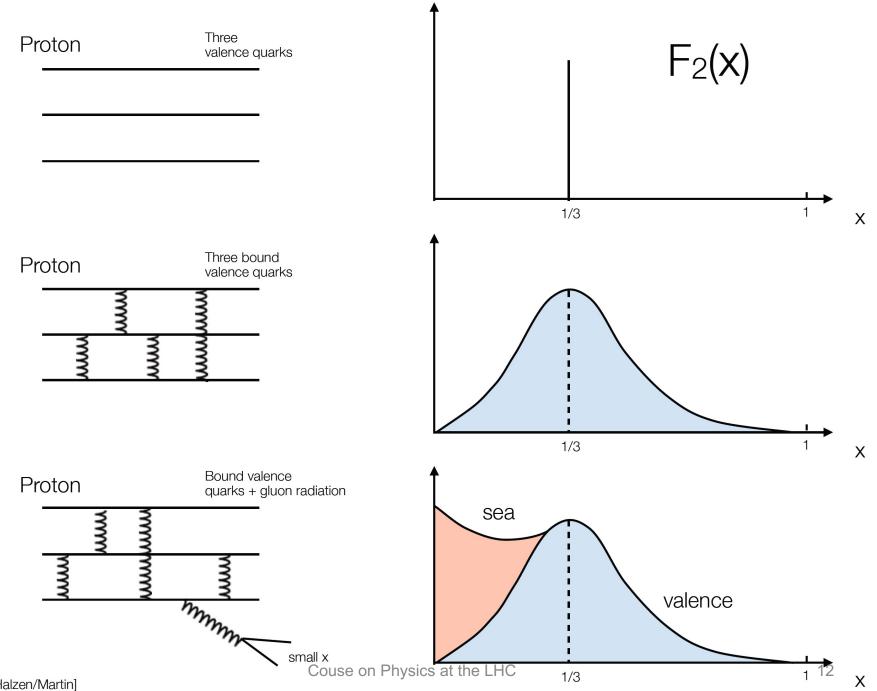
QCD Matrix Elements



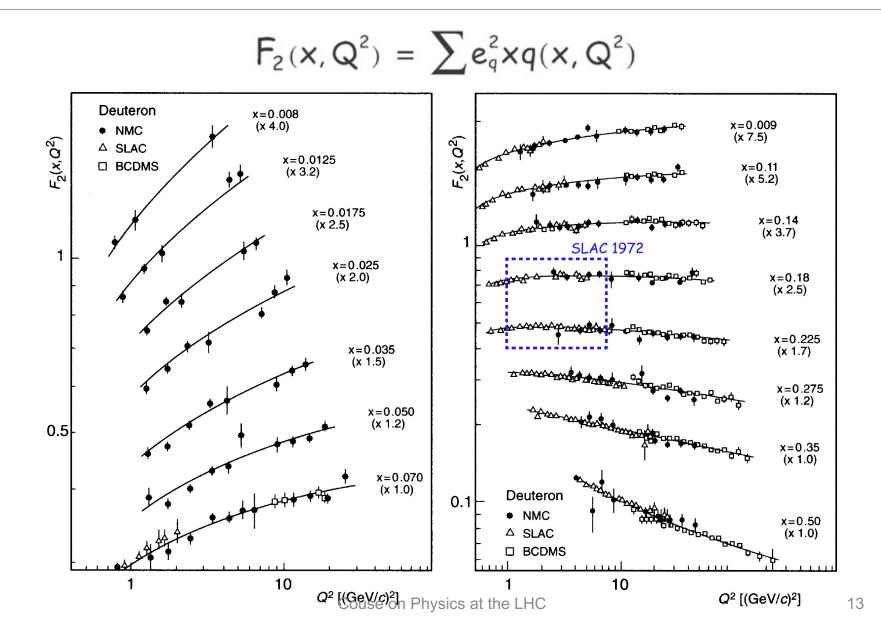
Subprocess		$ \mathcal{M} ^2/g_s^4$	$ \mathcal{M}(90^\circ) ^2/g_s^4$
$\left.\begin{array}{c} qq' \to qq' \\ q\bar{q}' \to q\bar{q}' \end{array}\right\}$	$\frac{4}{9} \; \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^{\; 2}}$		2.2
$qq \rightarrow qq$	$\frac{4}{9}\left(\frac{\hat{s}^2+\hat{u}}{\hat{t}^{2}}\right.$	$\left({{\hat s}^2 + {\hat t}^{2} \over {\hat u}^2} ight) - {8 \over 27} \; {{\hat s}^2 \over {\hat u}{\hat t}} .$	3.3
$q\bar{q} ightarrow q' \bar{q}'$	$\frac{4}{9} \; \frac{\hat{t}^{2} + \hat{u}^2}{\hat{s}^2}$		0.2
$q\bar{q} \to q\bar{q}$	$\frac{4}{9}\left(\frac{\hat{s}^2+\hat{u}}{\hat{t}^{2}}\right.$	$\left(rac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}} ight) - rac{8}{27} \; rac{\hat{u}^{2}}{\hat{s}\hat{t}} \; .$	2.6
$q \overline{q} ightarrow g g$		$\frac{2}{3} - \frac{8}{3} \; \frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2}$	1.0
$gg ightarrow q \overline{q}$	$\frac{1}{6} \; \frac{\hat{u}^2 + \hat{t}^{2}}{\hat{u}\hat{t}}$	$-rac{3}{8} \; rac{\hat{u}^2 + \hat{t}^{2}}{\hat{s}^2}$	0.1
qg ightarrow qg	$\frac{\hat{s}^2+\hat{u}^2}{\hat{t}^2}-$	$\frac{4}{9} \; \frac{\hat{s}^2 + \hat{u}^2}{\hat{u}\hat{s}}$	6.1
$gg \to gg$	${9\over 4}\left({{\hat s}^2+{\hat u}\over{{\hat t}^2}} ight.$	${{\hat a} \over {\hat a} - {\hat s}^2 + {\hat t}^2 \over {\hat u}^2} + {{\hat u}^2 + {\hat t}^2 \over {\hat s}^2} +$	3) 30.4

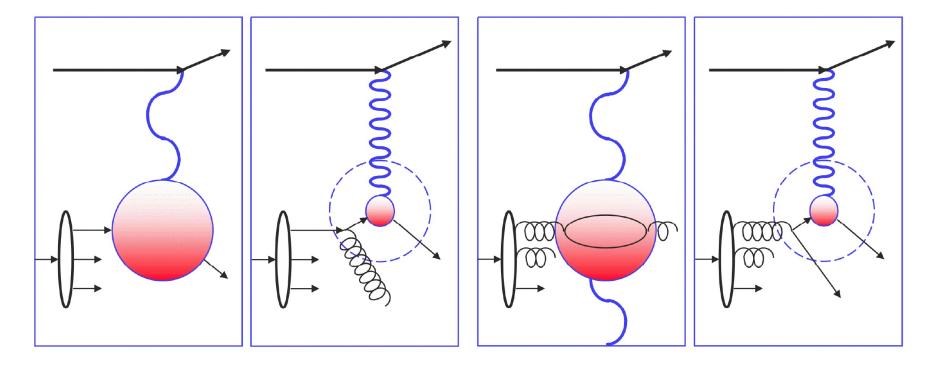

Proton-Proton Scattering: final state


QCD & parton densities

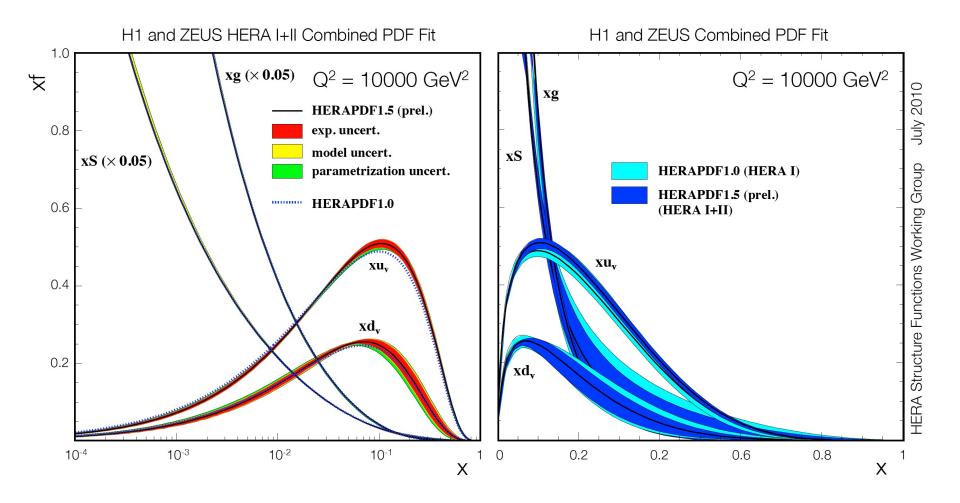


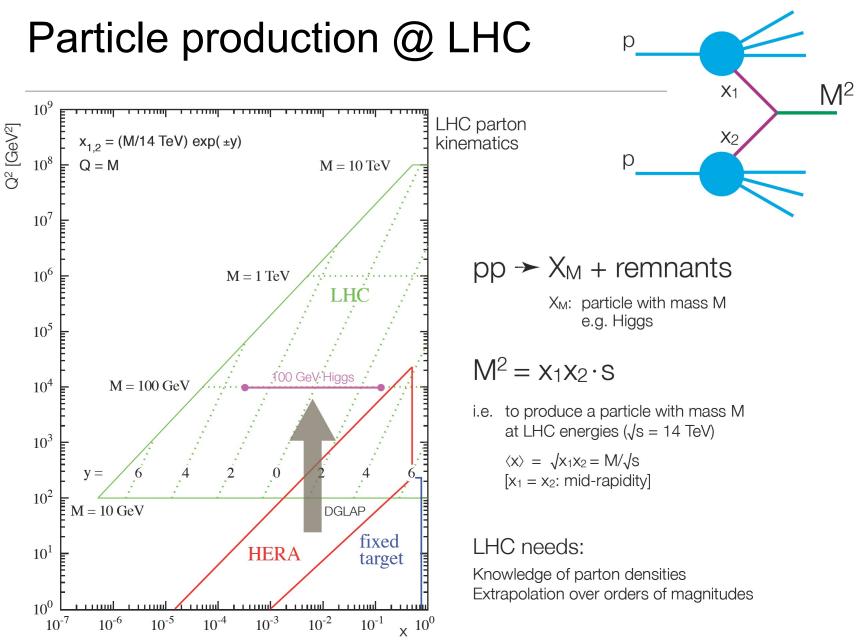
Lepton-proton scattering and proton structure


Structure Function

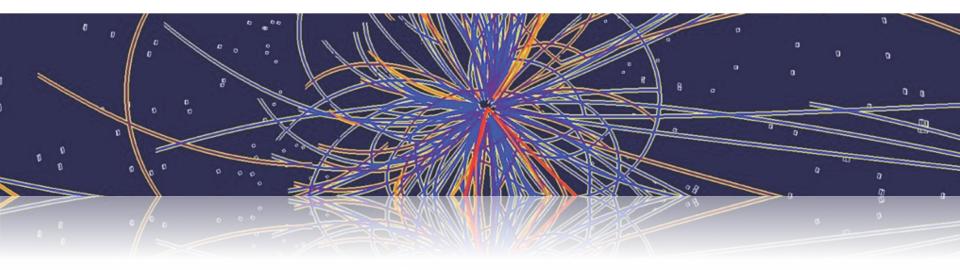

[see e.g. Halzen/Martin]

Scaling violation


Scaling violation


Proton quark dominated: $Q^2 \uparrow \Rightarrow F_2 \downarrow$ for fixed x Proton gluon dominated: $Q^2 \uparrow \Rightarrow F_2 \uparrow$ for fixed x

Q²-evolution described by DGLAP Equations


Proton parton densities

Couse on Physics at the LHC

Monte Carlo Generators

Monte Carlo overview

Monte Carlo simulation ...

Numerical process generation based on random numbers

Method very powerful in particle physics

Event generation programs:

Pythia, Herwig, Isajet Sherpa ...

Hard partonic subprocess + fragmentation & hadronization ...

Detector simulation:

Geant ...

interaction & response of all produced particles ...

MC simulations in particle physics

Event Generator

simulate physics process (quantum mechanics: probabilities!)

Detector Simulation simulate interaction with detector material

Digitization

translate interactions with detector into realistic signals

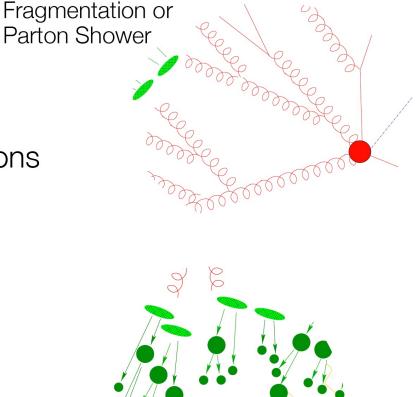
Reconstruction/Analysis as for real data

Pythia sub-processes

No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No.	Subprocess	No.	Subprocess
Hard QCD processes:	$36 f_i \gamma \to f_k W^{\pm}$	New gauge bosons:	Higgs pairs:	Compositeness:	210	$f_i \overline{f}_j \rightarrow \tilde{\ell}_L \tilde{\nu}_\ell^* +$	250	$f_i g \rightarrow \tilde{q}_{iL} \tilde{\chi}_3$
$11 \mathbf{f}_i \mathbf{f}_j \to \mathbf{f}_i \mathbf{f}_j$	$69 \gamma \gamma \to \mathrm{W}^+\mathrm{W}^-$	141 $f_i \overline{f}_i \to \gamma/Z^0/Z'^0$	$297 f_i \overline{f}_j \to \mathrm{H}^{\pm} \mathrm{h}^0$	146 $e\gamma \rightarrow e^*$	211	$f_i \overline{f}_j \rightarrow \tilde{\tau}_1 \tilde{\nu}_{\tau}^* +$	251	$f_i g \rightarrow \tilde{q}_{iR} \tilde{\chi}_3$
12 $f_i \overline{f}_i \to f_k \overline{f}_k$	$70 \gamma W^{\pm} \to Z^0 W^{\pm}$	142 $f_i \overline{f}_j \to W'^+$	$298 f_i \overline{f}_j \to H^{\pm} H^0$	$147 \mathrm{dg} \to \mathrm{d}^*$	212	$f_i \overline{f}_j \to \tilde{\tau}_2 \tilde{\nu}_{\tau}^* +$	252	$f_i g \rightarrow \tilde{q}_{iL} \tilde{\chi}_4$
13 $f_i \overline{f}_i \rightarrow gg$	Prompt photons:	144 $f_i \overline{f}_j \to R$	$299 f_i \overline{f}_i \to A^0 h^0$	$148 ug \rightarrow u^*$	213	$f_i \overline{f}_i \to \tilde{\nu_\ell} \tilde{\nu_\ell}^*$	253	$f_i g \rightarrow \tilde{q}_{iR} \tilde{\chi}_4$
$28 f_i g \to f_i g$	14 $f_i \overline{f}_i \to g\gamma$	Heavy SM Higgs:	$300 f_i \overline{f}_i \to A^0 H^0$	$167 \mathbf{q}_i \mathbf{q}_j \to \mathbf{d}^* \mathbf{q}_k$	214	$f_i \overline{f}_i \rightarrow \tilde{\nu}_{\tau} \tilde{\nu}_{\tau}^*$	254	$f_i g \rightarrow \tilde{q}_{jL} \tilde{\chi}^{\pm}_{1}$
53 gg $\rightarrow f_k \overline{f}_k$	$18 f_i \overline{f}_i \to \gamma \gamma$	$5 Z^0 Z^0 \rightarrow h^0$	$301 f_i \overline{f}_i \to H^+ H^-$	168 $\mathbf{q}_i \mathbf{q}_j \to \mathbf{u}^* \mathbf{q}_k$	216	$f_i \overline{f}_i \rightarrow \tilde{\chi}_1 \tilde{\chi}_1$	256	$f_i g \rightarrow \tilde{q}_{jL} \tilde{\chi}_2^{\pm}$
$68 gg \to gg$	$29 f_i g \to f_i \gamma$	$8 W^+W^- \rightarrow h^0$	Leptoquarks:	169 $q_i \overline{q}_i \to e^{\pm} e^{*\mp}$	217	$f_i \overline{f}_i \to \tilde{\chi}_2 \tilde{\chi}_2$	258	$f_ig \to \tilde{q}_{\mathit{i}\mathit{L}}\tilde{g}$
Soft QCD processes:	114 $gg \rightarrow \gamma\gamma$	$71 Z^0_L Z^0_L \to Z^0_L Z^0_L$	$145 q_i \ell_j \to L_Q$	165 $f_i \overline{f}_i (\to \gamma^* / Z^0) \to f_k \overline{f}_k$	218	$f_i \overline{f}_i o ilde{\chi}_3 ilde{\chi}_3$	259	$f_i g \rightarrow \tilde{q}_{iR} \tilde{g}$
91 elastic scattering	$115 gg \to g\gamma$	72 $Z_L^0 Z_L^0 \rightarrow W_L^+ W_L^-$	$162 qg \rightarrow \ell L_Q$	166 $f_i \overline{f}_j (\to W^{\pm}) \to f_k \overline{f}_l$	219	$f_i \overline{f}_i o ilde{\chi}_4 ilde{\chi}_4$	261	$f_i \overline{f}_i \to \tilde{t}_1 \tilde{t}_1^*$
92 single diffraction (XB)	Deeply Inel. Scatt.:	73 $Z_{L}^{\overline{0}}W_{L}^{\pm} \rightarrow Z_{L}^{\overline{0}}W_{L}^{\pm}$	163 $gg \rightarrow L_Q \dot{\overline{L}}_Q$	Extra Dimensions:	220	$f_i \overline{f}_i \to \tilde{\chi}_1 \tilde{\chi}_2$	262	$f_i \overline{f}_i \rightarrow \tilde{t}_2 \tilde{t}_2^*$
93 single diffraction (AX)	$10 f_i f_j \to f_k f_l$	76 $W_{L}^{+}W_{L}^{-} \rightarrow Z_{L}^{0}Z_{L}^{0}$	164 $q_i \overline{q}_i \rightarrow L_Q \overline{L}_Q$	$391 f\bar{f} \to G^*$	221	$f_i \overline{f}_i \to \tilde{\chi}_1 \tilde{\chi}_3$	263	$f_i \overline{f}_i \rightarrow \tilde{t}_1 \tilde{t}_2^* +$
94 double diffraction	$99 \gamma^* \mathrm{q} \to \mathrm{q}$	77 $W_L^{\pm}W_L^{\pm} \rightarrow \tilde{W}_L^{\pm}\tilde{W}_L^{\pm}$	Technicolor:	$392 gg \to G^*$	221	$f_i \overline{f}_i \to \tilde{\chi}_1 \tilde{\chi}_4$	264	$gg \to \tilde{t}_1 \tilde{t}_1^*$
95 low- p_{\perp} production	Photon-induced:	BSM Neutral Higgs:	149 gg $\rightarrow \eta_{\rm tc}$	$393 q\overline{q} \to gG^*$	222	$f_i \overline{f}_i \to \chi_1 \chi_4$ $f_i \overline{f}_i \to \tilde{\chi}_2 \tilde{\chi}_3$	265	$gg \to \tilde{t}_2 \tilde{t}_2^*$
Open heavy flavour:	$33 f_i \gamma \to f_i g$	151 $f_i \overline{f}_i \to H^0$	$\begin{array}{ccc} 191 & \mathbf{f}_i \mathbf{\bar{f}}_i \to \rho_{\mathrm{tc}}^0 \end{array}$	$394 qg \rightarrow qG^*$	223	$ \begin{array}{l} \mathbf{f}_i \mathbf{f}_i \to \chi_2 \chi_3 \\ \mathbf{f}_i \mathbf{f}_i \to \tilde{\chi}_2 \tilde{\chi}_4 \end{array} $	271	$f_i f_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jL}$
(also fourth generation)	$34 f_i \gamma \to f_i \gamma$	$152 gg \to H^0$	$\begin{array}{ccc} 101 & f_{i1} & \rho_{tc} \\ 192 & f_i \overline{f}_j \rightarrow \rho_{tc}^+ \end{array}$	$395 gg \to gG^*$	$224 \\ 225$	$\chi_{1i1i} \rightarrow \chi_2 \chi_4$	272	$f_i f_j \rightarrow \tilde{q}_{iR} \tilde{q}_{jR}$
81 $f_i \overline{f}_i \rightarrow Q_k \overline{Q}_k$	54 $g\gamma \to f_k \overline{f}_k$	153 $\gamma \gamma \rightarrow \mathrm{H}^{0}$	$\begin{array}{ccc} 102 & f_{i}\overline{f}_{i} & \phi_{tc}^{0} \\ 193 & f_{i}\overline{f}_{i} & \phi_{tc}^{0} \end{array}$	Left–right symmetry:		$ \begin{array}{c} \mathbf{f}_i \overline{\mathbf{f}}_i \to \tilde{\chi}_3 \tilde{\chi}_4 \\ \mathbf{f}_i \overline{\mathbf{f}} & \mathbf{f}_i^+ \mathbf{f}_i^+ \end{array} $	273	$f_i f_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jR} +$
82 $gg \rightarrow Q_k \overline{Q}_k$	58 $\gamma \gamma \to f_k \overline{f}_k$	171 $f_i \overline{f}_i \rightarrow Z^0 H^0$	$\begin{array}{ccc} 193 & f_i \overline{f}_i \rightarrow \mathfrak{G}_k \overline{f}_k \\ 194 & f_i \overline{f}_i \rightarrow f_k \overline{f}_k \end{array}$	$341 \ell_i \ell_j \to \mathcal{H}_L^{\pm \pm}$	226	$f_i \overline{f}_i \to \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$	274	$f_i \overline{f}_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jL}^*$
83 $q_i f_j \rightarrow Q_k f_l$	131 $f_i \gamma_T^* \to f_i g$	172 $f_i \overline{f}_j \rightarrow W^{\pm} H^0$	$\begin{array}{ccc} 191 & f_i \overline{f}_i & f_k \overline{f}_k \\ 195 & f_i \overline{f}_j & \to f_k \overline{f}_l \end{array}$	$342 \ell_i \ell_j \to \mathcal{H}_R^{\pm \pm}$	227	$f_i \overline{f}_i \to \tilde{\chi}_2^{\pm} \tilde{\chi}_2^{\mp}$	275	$f_i \overline{f}_j \rightarrow \tilde{q}_{iR} \tilde{q}_{jR}^*$
84 $g\gamma \rightarrow Q_k \overline{Q}_k$	132 $f_i \gamma_L^* \to f_i g$	173 $f_i f_j \rightarrow f_i f_j H^0$	$\begin{array}{ccc} 155 & f_i f_j \rightarrow f_k f_l \\ 361 & f_i \overline{f}_i \rightarrow W_L^+ W_L^- \end{array}$	343 $\ell_i^{\pm} \gamma \to \mathrm{H}_L^{\pm\pm} \mathrm{e}^{\mp}$	228	$f_i \overline{f}_i \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$	276	$f_i \overline{f}_j \rightarrow \tilde{q}_{iL} \tilde{q}_j^* R +$
85 $\gamma \gamma \to \mathbf{F}_k \overline{\mathbf{F}}_k$	133 $f_i \gamma_T^* \to f_i \gamma$	174 $f_i f_j \rightarrow f_k f_l H^0$	$\begin{array}{ccc} 361 & \mathbf{I}_i \mathbf{I}_i \to \mathbf{W}_{\mathrm{L}} \mathbf{W}_{\mathrm{L}} \\ 362 & \mathbf{f}_i \mathbf{\overline{f}}_i \to \mathbf{W}_{\mathrm{L}}^{\pm} \pi_{\mathrm{tc}}^{\mp} \end{array}$	$\begin{array}{ccc} 343 & \ell_i^{\pm} \gamma \to \mathbf{H}_L^{\pm} \mathbf{e}^{\mp} \\ 344 & \ell_i^{\pm} \gamma \to \mathbf{H}_R^{\pm\pm} \mathbf{e}^{\mp} \end{array}$	229	$f_i \overline{f}_j \to \tilde{\chi}_1 \tilde{\chi}_1^{\pm}$	277	$f_i \overline{f}_i \rightarrow \tilde{q}_{jL} \tilde{q}_{jL}^*$
Closed heavy flavour:	$134 f_i \gamma_L^* \to f_i \gamma$	181 gg $\rightarrow Q_k \overline{Q}_k H^0$	$\begin{array}{ccc} 362 & f_i f_i \rightarrow W_L \pi_{tc} \\ 363 & f_i \overline{f}_i \rightarrow \pi_{tc}^+ \pi_{tc}^- \end{array}$	$1345 \ell_i^{\pm} \gamma \to \mathrm{H}_L^{\pm\pm} \mu^+$	230	$f_i \overline{f}_j \to \tilde{\chi}_2 \tilde{\chi}_1^{\pm}$	278	$f_i \overline{f}_i \to \tilde{q}_{jR} \tilde{q}_{jR}^*$
86 $gg \rightarrow J/\psi g$	135 $g\gamma_T^* \to f_i \overline{f}_i$	182 $q_i \overline{q}_i \rightarrow Q_k \overline{Q}_k H^0$	$\begin{array}{ccc} 363 & \mathbf{f}_i \mathbf{f}_i \to \pi_{\mathrm{tc}} \pi_{\mathrm{tc}} \\ 364 & \mathbf{f}_i \mathbf{f}_i \to \gamma \pi_{\mathrm{tc}}^0 \end{array}$	$346 \ell_i^{\pm} \gamma \to \mathrm{H}_P^{\pm\pm} \mu^{\mp}$	231	$f_i \overline{f}_j \to \tilde{\chi}_3 \tilde{\chi}_1^{\pm}$	279	$gg \rightarrow \tilde{q}_{iL} \tilde{q}_{iL}^*$
87 $gg \rightarrow \chi_{0c}g$	136 $g\gamma_L^* \to f_i \overline{f}_i$	183 $f_i \overline{f}_i \rightarrow g H^0$		$347 \ell_i^{\pm} \gamma \to \mathbf{H}_L^{\pm\pm} \tau^{\mp}$	232	$f_i \overline{f}_j \to \tilde{\chi}_4 \tilde{\chi}_1^{\pm}$	280	$gg \rightarrow \tilde{q}_{iR}\tilde{q}_{iR}^*R$
88 $gg \rightarrow \chi_{1c}g$	137 $\gamma_{\rm T}^* \gamma_{\rm T}^* \to {\rm f}_i \overline{{\rm f}}_i$	$184 f_i g \to f_i H^0$	$\begin{array}{ccc} 365 & f_i \overline{f}_i \to \gamma {\pi'}_{tc}^0 \\ 365 & c \overline{f}_i \to \gamma {\pi'}_{tc}^0 \end{array}$	$348 \ell_i^{\pm} \gamma \to \mathbf{H}_R^{\Xi\pm} \tau^{\mp}$	233	$f_i \overline{f}_j \to \tilde{\chi}_1 \tilde{\chi}_2^{\pm}$	281	$bq_i \rightarrow \tilde{b}_1 \tilde{q}_{iL}$
89 gg $\rightarrow \chi_{2c}$ g	138 $\gamma_{\rm T}^* \gamma_{\rm L}^* \to {\rm f}_i \overline{\rm f}_i$	185 $gg \rightarrow gH^0$	$\begin{array}{ccc} 366 & f_i \overline{f}_i \to Z^0 \pi^0_{tc} \\ 366 & 0 & \overline{f}_i \end{array} & \overline{f}_i \to Z^0 \pi^0_{tc} \end{array}$	349 $f_i \overline{f}_i \to H_L^{++} H_L^{}$	234	$f_i \overline{f}_j \to \tilde{\chi}_2 \tilde{\chi}_2^{\pm}$	282	$bq_i \rightarrow \tilde{b}_2 \tilde{q}_{iR}$
104 gg $\rightarrow \chi_{0c}$	139 $\gamma_{\rm L}^* \gamma_{\rm T}^* \to {\rm f}_i \overline{{\rm f}}_i$	156 $f_i \overline{f}_i \to A^0$	367 $f_i \overline{f}_i \to Z^0 \pi'^0_{tc}$	$350 f_i \overline{f}_i \to H_R^{++} H_R^{}$	235	$f_i \overline{f}_j \to \tilde{\chi}_3 \tilde{\chi}_2^{\pm}$	283	$bq_i \rightarrow \tilde{b}_1 \tilde{q}_{iR} +$
$105 \mathrm{gg} \to \chi_{2\mathrm{c}}$	140 $\gamma_{\rm L}^* \gamma_{\rm L}^* \to {\rm f}_i \overline{{\rm f}}_i$	$157 \mathrm{gg} \to \mathrm{A}^{\mathrm{0}}$	368 $f_i \overline{f}_i \to W^{\pm} \pi_{tc}^{\mp}$	$351 f_i f_j \to f_k f_l H_L^{\pm \pm}$	236	$f_i \overline{f}_j \to \tilde{\chi}_4 \tilde{\chi}_2^{\pm}$	284	$b\overline{q}_i \rightarrow \tilde{b}_1 \tilde{q}_{iL}^*$
$106 gg \to J/\psi\gamma$	$\begin{array}{ccc} 80 & q_i \gamma \to q_k \pi^{\pm} \end{array}$	158 $\gamma \gamma \rightarrow A^0$	$370 f_i \overline{f}_j \to W_L^{\pm} Z_L^{0}$	$352 f_i f_j \to f_k f_l H_R^{\pm \pm}$	237	$f_i \overline{f}_i o \tilde{g} \tilde{\chi}_1$	285	$b\overline{\mathbf{q}}_i \to \tilde{\mathbf{b}}_2 \tilde{\mathbf{q}}_i^* R$
$107 \mathrm{g}\gamma \to \mathrm{J}/\psi\mathrm{g}$	Light SM Higgs:	176 $f_i \overline{f}_i \rightarrow Z^0 A^0$	$371 f_i \overline{f}_j \to W_L^{\pm} \pi_{tc}^0$	$353 f_i \overline{f}_i \to Z_R^0$	238	$f_i \overline{f}_i \rightarrow \tilde{g} \tilde{\chi}_2$	286	$b\overline{\mathbf{q}}_i \to \tilde{\mathbf{b}}_2 \tilde{\mathbf{q}}_i R$ $b\overline{\mathbf{q}}_i \to \tilde{\mathbf{b}}_1 \tilde{\mathbf{q}}_i R$ +
108 $\gamma \gamma \rightarrow J/\psi \gamma$	$3 f_i \overline{f}_i \rightarrow h^0$	$177 f_i \overline{f}_j \to W^{\pm} A^0$	$372 f_i \overline{f}_j \to \pi_{tc}^{\pm} Z_L^0$	$354 f_i \overline{f}_j \to W_B^{\pm}$	239	${ m f}_i \overline{{ m f}}_i ightarrow { m ilde g} { ilde \chi}_3$	287	$f_i \overline{f}_i \to \tilde{b}_1 \tilde{b}_1^*$
W/Z production:	$24 \mathbf{f}_i \mathbf{\bar{f}}_i \to \mathbf{Z}^0 \mathbf{h}^0$	$178 f_i f_j \rightarrow f_i f_j A^0$	$373 f_i \overline{f}_j \to \pi_{tc}^{\pm} \pi_{tc}^0$	SUSY:	240	$f_i \overline{f}_i \rightarrow \tilde{g} \tilde{\chi}_4$	288	$f_i \overline{f}_i \rightarrow \tilde{b}_1 \tilde{b}_1$ $f_i \overline{f}_i \rightarrow \tilde{b}_2 \tilde{b}_2^*$
$1 f_i \overline{f}_i \to \gamma^* / Z^0$	$26 f_i \overline{f}_j \to W^{\pm} h^0$	179 $f_i f_j \rightarrow f_k f_l A^0$	$374 f_i \overline{f}_j \to \gamma \pi_{tc}^{\pm}$	201 $f_i \overline{f}_i \to \tilde{e}_L \tilde{e}_L^*$	241	$f_i \overline{f}_j \to \tilde{g} \tilde{\chi}_1^{\pm}$	289	$gg \rightarrow \tilde{b}_1 \tilde{b}_1^*$
$2 f_i \overline{f}_j \to W^{\pm}$	$\begin{array}{ccc} 20 & f_{i}f_{j} \rightarrow f_{i}h^{0} \\ 32 & f_{i}g \rightarrow f_{i}h^{0} \end{array}$	186 $gg \to Q_k \overline{Q}_k A^0$	$375 f_i \overline{f}_j \to Z^0 \pi_{tc}^{\pm}$	202 $f_i \overline{f}_i \to \tilde{e}_R \tilde{e}_R^*$	242	$f_i \overline{f}_j \to \tilde{g} \tilde{\chi}_2^{\pm}$	289	$gg \rightarrow \tilde{b}_1 \tilde{b}_1$ $gg \rightarrow \tilde{b}_2 \tilde{b}_2^*$
22 $f_i \overline{f}_i \rightarrow Z^0 Z^0$	$102 \mathrm{gg} \to \mathrm{h}^0$	$\begin{array}{ccc} 187 & q_i \overline{q}_i \rightarrow Q_k \overline{Q}_k A^0 \end{array}$	$376 f_i \overline{f}_j \to W^{\pm} \pi^0_{tc}$	203 $f_i \overline{f}_i \rightarrow \tilde{e}_L \tilde{e}_R^* +$	243	$f_i \overline{f}_i \to \tilde{g} \tilde{g}$		
23 $f_i \overline{f}_i \rightarrow Z^0 W^{\pm}$	$102 \text{gg} \rightarrow \text{h}^{0}$ $103 \gamma\gamma \rightarrow \text{h}^{0}$	$\begin{array}{ccc} 101 & \mathbf{q}_i \mathbf{q}_i & \mathbf{Q}_k \mathbf{Q}_k \mathbf{f}_i \\ 188 & \mathbf{f}_i \overline{\mathbf{f}}_i \to \mathbf{g} \mathbf{A}^0 \end{array}$	377 $f_i \overline{f}_j \to W^{\pm} {\pi'}_{tc}^0$	$204 f_i \overline{f}_i \to \tilde{\mu}_L \tilde{\mu}_L^*$	244	$gg \rightarrow \tilde{g}\tilde{g}$	291	$bb \rightarrow \tilde{b}_1 \tilde{b}_1$
$25 f_i \overline{f}_i \rightarrow W^+ W^-$	$\begin{array}{ccc} 100 & f_{i} \\ 110 & f_{i} \\ \overline{f}_{i} \rightarrow \gamma h^{0} \end{array}$	$\begin{array}{ccc} 180 & f_i f_i \rightarrow g A \\ 189 & f_i g \rightarrow f_i A^0 \end{array}$	$381 \mathbf{q}_i \mathbf{q}_j \to \mathbf{q}_i \mathbf{q}_j$	$\begin{array}{ccc} 205 & f_i \overline{f}_i \to \tilde{\mu}_R \tilde{\mu}_R^* \end{array}$	246	$f_{ig} \rightarrow \tilde{q}_{iL} \tilde{\chi}_1$	292	$bb \rightarrow \tilde{b}_2 \tilde{b}_2$
$15 f_i \overline{f}_i \to g Z^0$	$\begin{array}{ccc} 110 & f_i f_i & \text{if} \\ 111 & f_i \overline{f}_i & \text{ogh}^0 \end{array}$	$\begin{array}{ccc} 109 & I_{i}\mathrm{g} \rightarrow I_{i}\mathrm{A} \\ 190 & \mathrm{gg} \rightarrow \mathrm{gA}^{0} \end{array}$	$382 \mathbf{q}_i \overline{\mathbf{q}}_i \to \mathbf{q}_k \overline{\mathbf{q}}_k$	$\begin{array}{ccc} 200 & f_i \overline{f}_i \to \tilde{\mu}_L \tilde{\mu}_R^* + \\ 206 & f_i \overline{f}_i \to \tilde{\mu}_L \tilde{\mu}_R^* + \end{array}$	247	$f_{ig} \rightarrow \tilde{q}_{iR} \tilde{\chi}_{1}$	293	$bb \rightarrow \tilde{b}_1 \tilde{b}_2$
$16 f_i \overline{f}_j \to g W^{\pm}$	$\begin{array}{ccc} 111 & f_{i}r_{i} \rightarrow gn \\ 112 & f_{i}g \rightarrow f_{i}h^{0} \end{array}$	Charged Higgs:	$383 q_i \overline{q}_i \to gg$	$\begin{array}{ccc} 200 & f_i \tilde{f}_i & \to \tilde{\tau}_1 \tilde{\tau}_1^* \\ 207 & f_i \tilde{f}_i & \to \tilde{\tau}_1 \tilde{\tau}_1^* \end{array}$	248	$f_{ig} \rightarrow \tilde{q}_{iL} \tilde{\chi}_2$	294	$bg \rightarrow \tilde{b}_1 \tilde{g}$
$\begin{array}{ccc} 10 & f_{i}f_{j} & g^{(1)} \\ 30 & f_{i}g \rightarrow f_{i}Z^{0} \end{array}$	$112 r_{ig} \rightarrow r_{in}$ $113 gg \rightarrow gh^0$	143 $f_i \overline{f}_j \to H^+$	$384 f_i g \to f_i g$	$\begin{array}{ccc} 208 & f_i \overline{f}_i \to \tilde{\tau}_2 \tilde{\tau}_2^* \\ 208 & f_i \overline{f}_i \to \tilde{\tau}_2 \tilde{\tau}_2^* \end{array}$	249	$f_{ig} \rightarrow \tilde{q}_{iR} \tilde{\chi}_2$	295	$b\underline{g} \rightarrow \tilde{b}_2 \tilde{g}$
$31 f_i g \to f_k W^{\pm}$	$\begin{array}{ccc} 110 & \mathrm{gg} \to \mathrm{Gn} \\ 121 & \mathrm{gg} \to \mathrm{Q}_k \overline{\mathrm{Q}}_k \mathrm{h}^0 \end{array}$	$\begin{array}{ccc} 143 & f_i f_j \rightarrow H \\ 161 & f_i g \rightarrow f_k H^+ \end{array}$	$385 \mathrm{gg} \to \mathrm{q}_k \overline{\mathrm{q}}_k$	$\begin{array}{ccc} 200 & f_i \tilde{f}_i \rightarrow \tilde{\tau}_2 \tilde{\tau}_2 \\ 209 & f_i \tilde{f}_i \rightarrow \tilde{\tau}_1 \tilde{\tau}_2^* + \end{array}$			296	$b\overline{b} \to \tilde{b}_1 \tilde{b}_2^* +$
$\begin{array}{ccc} 19 & f_i \overline{f}_i \to \gamma Z^0 \end{array}$	$\begin{vmatrix} 121 & \text{gg} & Q_k Q_k \\ 122 & q_i \overline{q}_i \to Q_k \overline{Q}_k h^0 \end{vmatrix}$	$\begin{array}{ccc} 101 & \eta_{10} & \eta_{1k} \\ 401 & \mathrm{gg} \to \overline{\mathrm{tb}}\mathrm{H}^{+} \end{array}$	$386 gg \rightarrow gg$	200 1/1/2				
$\begin{array}{ccc} 10 & 1.1i & 1.2i \\ 20 & f_i \overline{f}_i \to \gamma W^{\pm} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 401 & gg & tbH \\ 402 & q\overline{q} \rightarrow \overline{t}bH^+ \end{array}$	$387 f_i \overline{f}_i \to Q_k \overline{Q}_k$					
$\begin{array}{ccc} 20 & f_i f_j & f_i \gamma \\ 35 & f_i \gamma ightarrow f_i Z^0 \end{array}$	$\begin{array}{ccc} 123 & I_{i}I_{j} \rightarrow I_{i}I_{j}II \\ 124 & f_{i}f_{j} \rightarrow f_{k}f_{l}h^{0} \end{array}$	44 · 0011	$388 gg \to Q_k \overline{Q}_k$					

From Partons to Jets

From partons to color neutral hadrons:

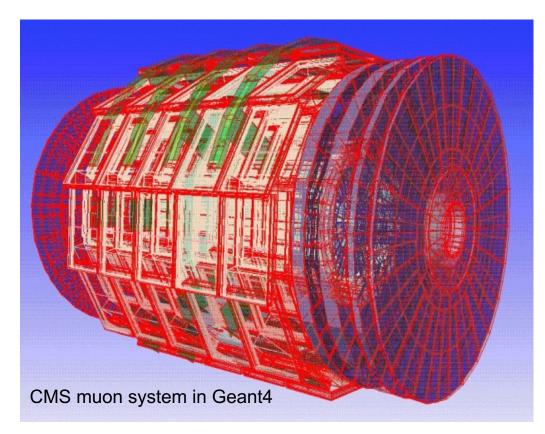

Fragmentation:

Parton splitting into other partons [QCD: re-summation of leading-logs] ["Parton shower"]

Hadronization:

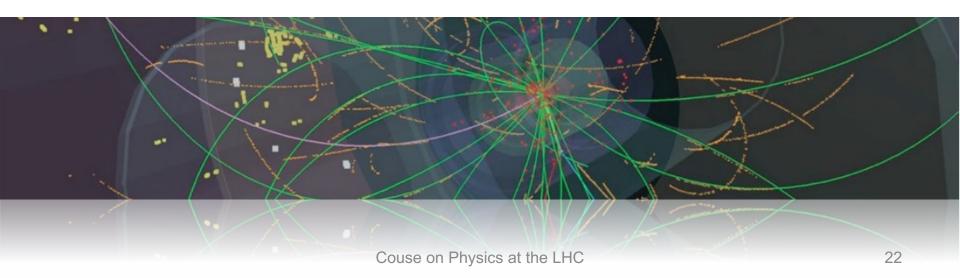
Parton shower forms hadrons [non-perturbative, only models]

Decay of unstable hadrons [perturbative QCD, electroweak theory]


Detector simulation

GEANT Geometry And Tracking

Detailed description of detector geometry [sensitive & insensitive volumes]


Tracking of all particles through detector material ...

➤ Detector response

Developed at CERN since 1974 (FORTRAN) [Today: Geant4; programmed in C⁺⁺]

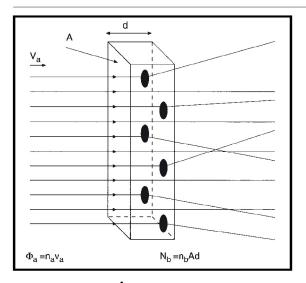
Luminosity and cross-section measurements

Cross section & Luminosity

Background

measured from data or calculated from theory

$$\sigma = \frac{N^{\text{obs}} - N^{\text{bkg}}}{\int \mathcal{L} \, \mathrm{d}t \cdot \varepsilon}$$


Luminosity

determined by accelerator, triggers, ...

Efficiency

many factors, optimized by experimentalist

Cross section & Luminosity

$$\Phi_a = \frac{N_a}{A} = n_a v_a$$

 Φ_a : flux

- na: density of particle beam
- va: velocity of beam particles

$$\dot{N} = \Phi_a \cdot N_b \cdot \sigma_b$$

- N : reaction rate
- N_b : target particles within beam area σ_a : effective area of single
- scattering center

$$L = \Phi_a \cdot N_b$$

L : luminosity

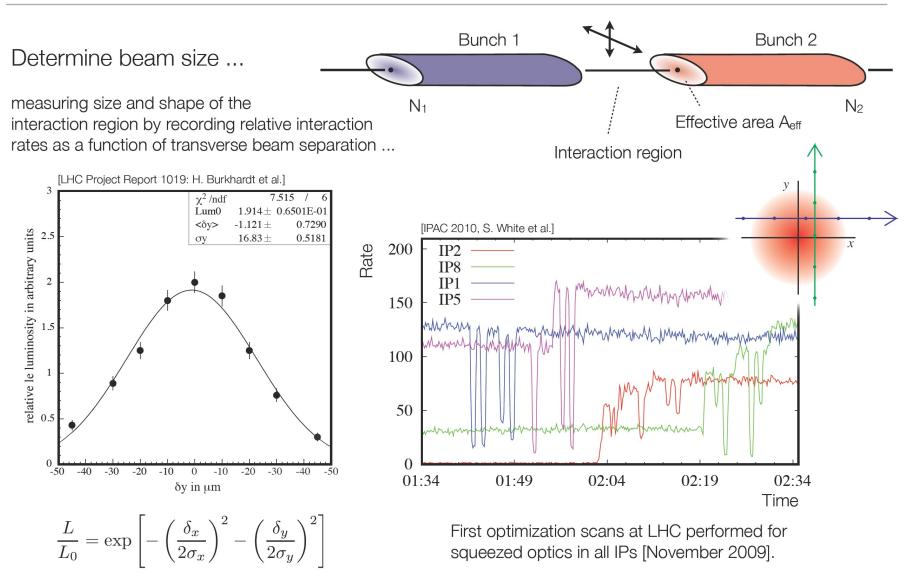
$$\dot{N} \equiv L \cdot \sigma$$
$$N = \sigma \cdot \int L \, dt \qquad \sigma = N/L$$

integrated luminosity

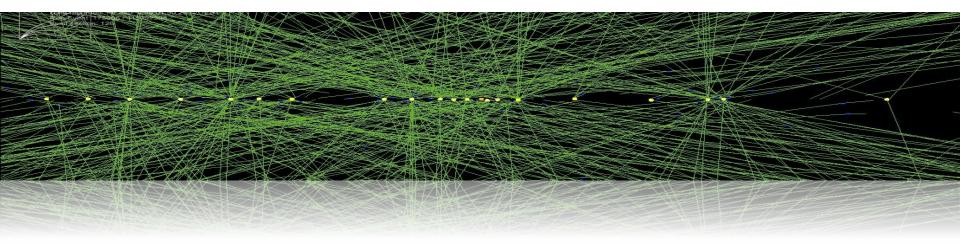
Collider experiment:

$$\Phi_{a} = \frac{\dot{N}_{a}}{A} = \frac{N_{a} \cdot n \cdot v/U}{A} = \frac{N_{a} \cdot n \cdot f}{A}$$

$$L = f \frac{nN_{a}N_{b}}{A} = f \frac{nN_{a}N_{b}}{4\pi\sigma_{x}\sigma_{y}}$$

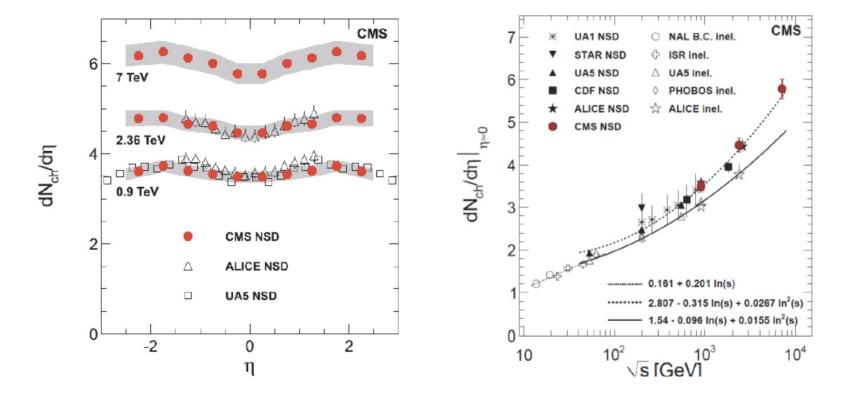

$$\text{LHC:}$$

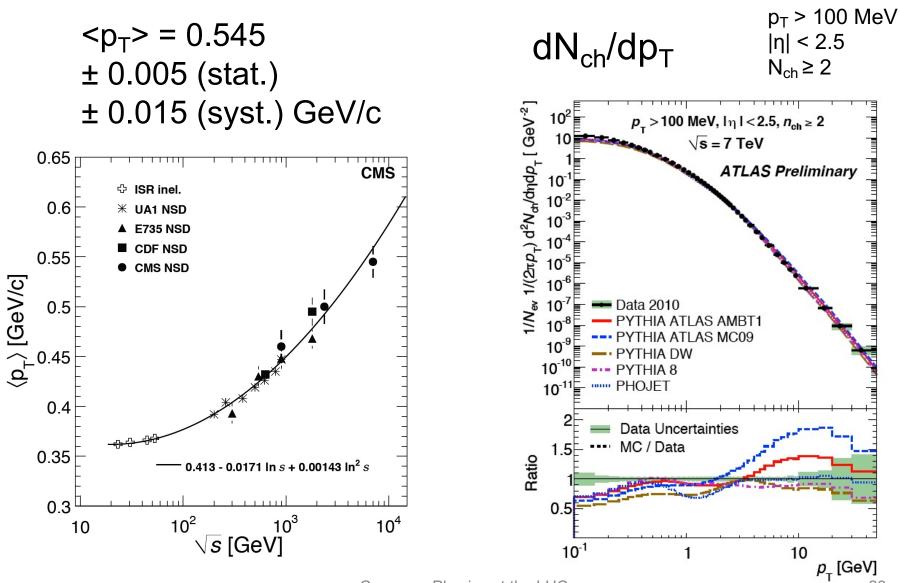
$$N_{x} \sim 10^{11} \text{ N}_{a} \sim .0005 \text{ mm}^{2} \text{ n} \sim 2800 \text{ f} \sim 11 \text{ kHz}$$


$$L \sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$$

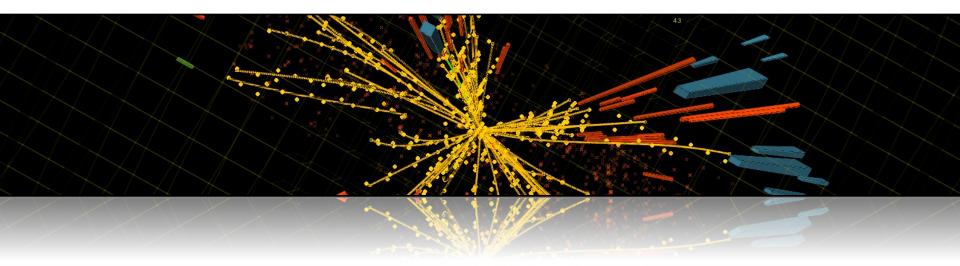
$$N_{a} \cdot number \text{ of particles per bunch (beam A)} \text{ N}_{b} \cdot number \text{ of particles per bunch (beam A)} \text{ N}_{b} \cdot number \text{ of particles per bunch (beam A)} \text{ N}_{b} \cdot number \text{ of particles per bunch (beam A)} \text{ N}_{b} \cdot number \text{ of particles per bunch (beam A)} \text{ N}_{b} \cdot number \text{ of particles per bunch (beam A)} \text{ N}_{b} \cdot number \text{ of particles per bunch (beam A)} \text{ N}_{b} \cdot number \text{ of particles per bunch (beam A)} \text{ N}_{b} \cdot number \text{ of particles per bunch (beam B)} \text{ U : circumference of ring} \text{ n : number of bunches per beam} \text{ v : velocity of beam particles} \text{ f : revolution frequency} \text{ A : beam cross-section} \text{ } \sigma_{x} \cdot \text{ standard deviation of beam profile in x} } \sigma_{y} \cdot \text{ standard deviation of beam profile in x}}$$

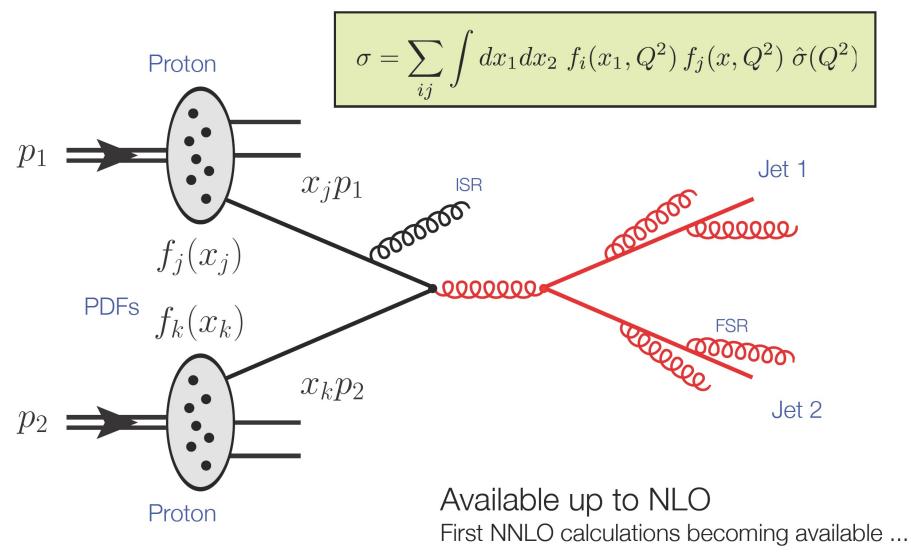
Van-der-Meer separation scan

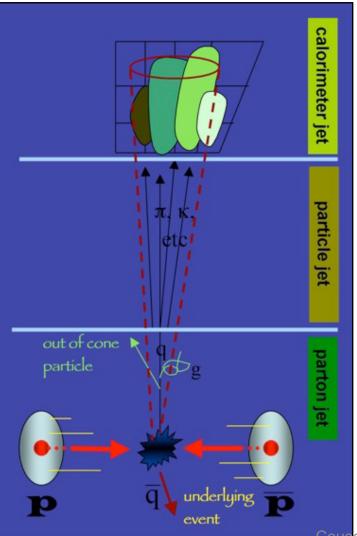

Minimum bias events


Characteristics of inelastic p-p collisions

Particle density in minimum bias events


Soft QCD (PT threshold on tracks: 50 MeV)


Charged particle p_⊤ spectrum


Jet physics

Jet production @ LHC

Jet properties measurement

Calorimeter Jet

[extracted from calorimeter clusters]

Understanding of detector response Knowledge about dead material Correct signal calibration Potentially include tracks

Hadron Jet

[might include electrons, muons ...]

Hadronization Fragmentation Parton shower Particle decays

Parton Jet [quarks and gluons]

Proton-proton interactions Initial and final state radiation Underlying event

From porticle operation

From particle energy to original parton energy

"Measurement"

Compensate hadronization; energy in/outside jet cone

Couse on Physics at the LHC

Jet

"Theory"

to particle energy

Compensate energy loss

due to neutrinos, nuclear

Needs

Calibration

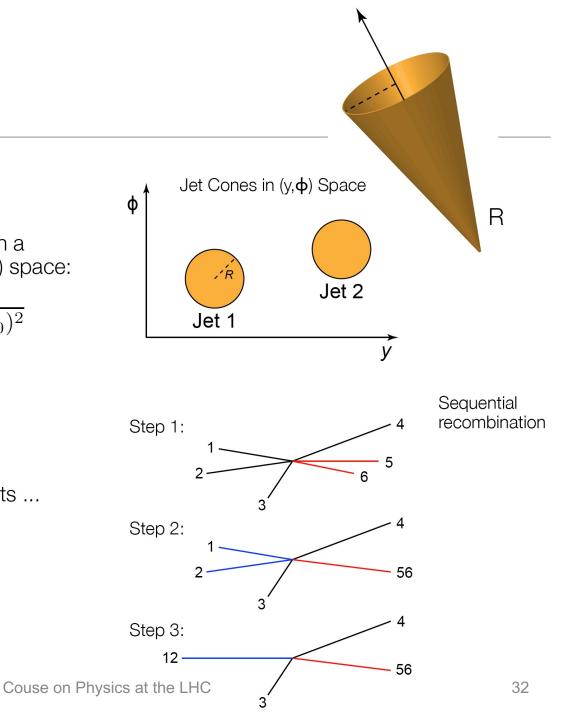
excitation ...

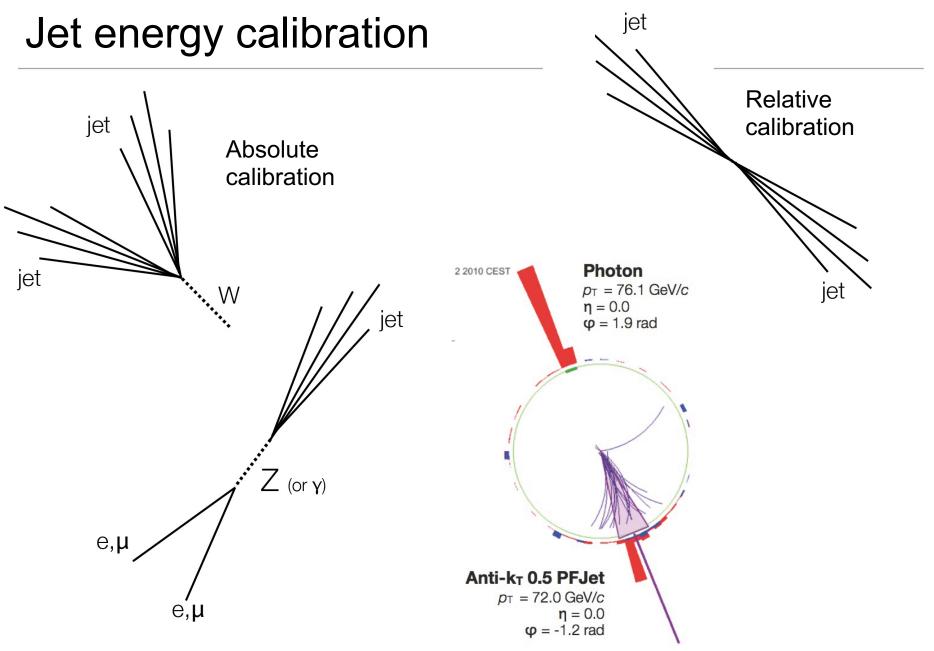
From measured energy

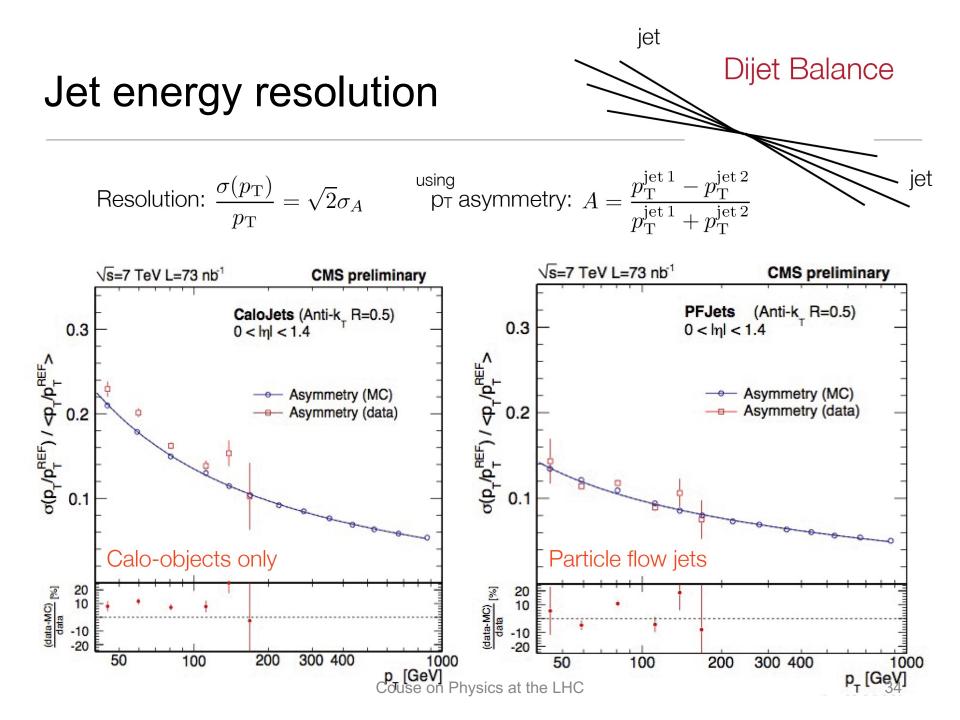
Jet reconstruction

Iterative cone algorithms:

Jet defined as energy flow within a cone of radius R in (y, ϕ) or (η, ϕ) space:


 $R = \sqrt{(y - y_0)^2 + (\phi - \phi_0)^2}$

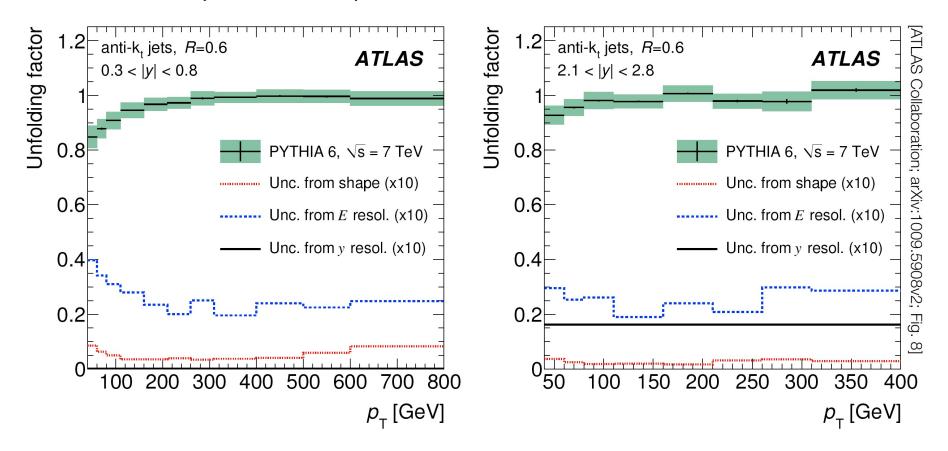

Sequential recombination algorithms:


Define distance measure d_{ij} ... Calculate d_{ij} for all pairs of objects ... Combine particles with minimum d_{ij} below cut ... Stop if minimum d_{ij} above cut ...

e.g. k⊤-algorithm: [see later]

$$d_{ij} = \min\left(k_{T,i}^2, k_{T,j}^2\right) \frac{\Delta R_{ij}}{R}$$

['bin-by-bin' unfolding]

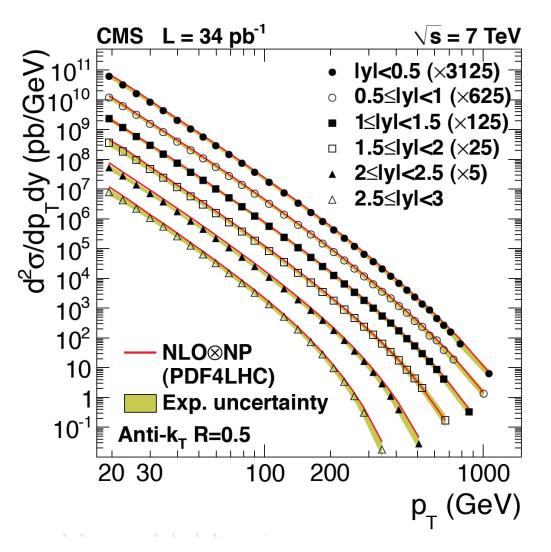

 $N_{\rm part} = N_{\rm meas}$

part

meas

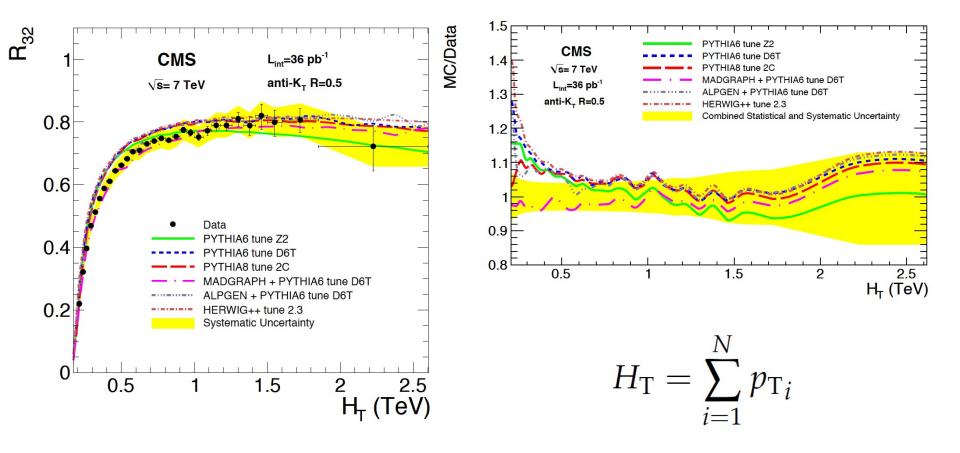
Resolution unfolding

Measured spectrum = Real spectrum ⊗ Experim. resolution

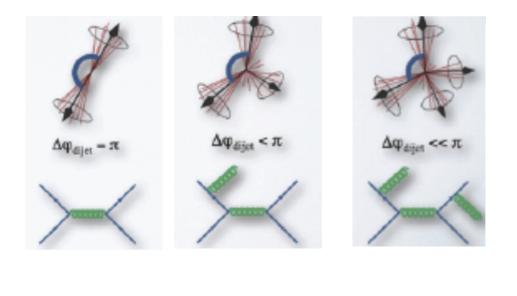

Inclusive jet cross-section

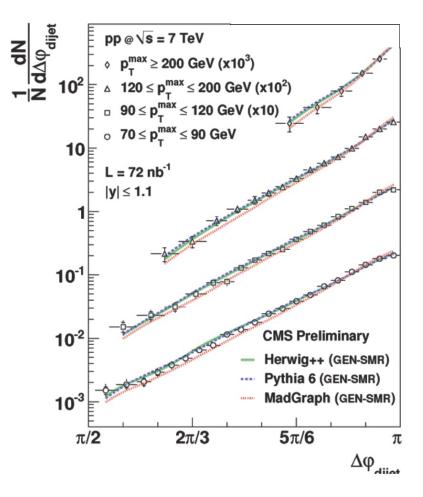
Cross section is huge (~ Tevatron x 100)

Very good agreement with NLO QCD over nine orders of magnitude


PT extending from 20 to 500 GeV

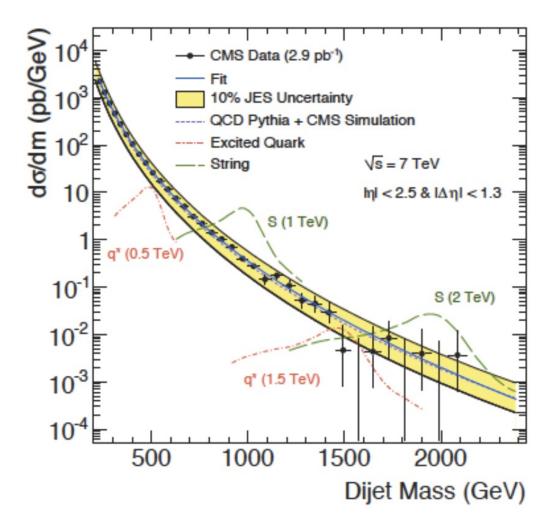
Main uncertainty: Jet Energy Scale (3-4%)


Inclusive jet cross sections: 3-jet / 2-jet ratio


hep-ex 1106.0647, PLB 702 (2011) 336

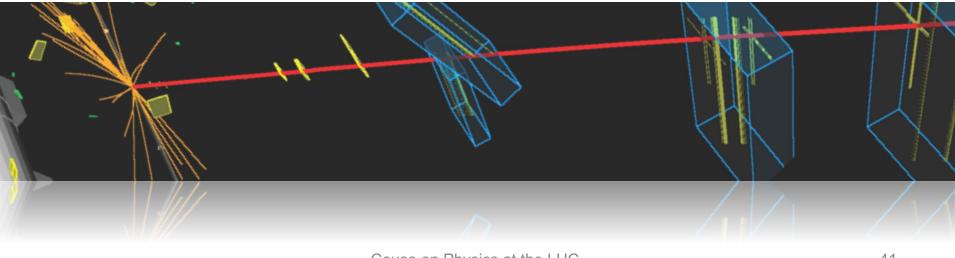
Jets: angular correlations

Difference in azimuth of the two leading jets Probe of QCD high-order processes Very slight dependence on JES No dependence on luminosity

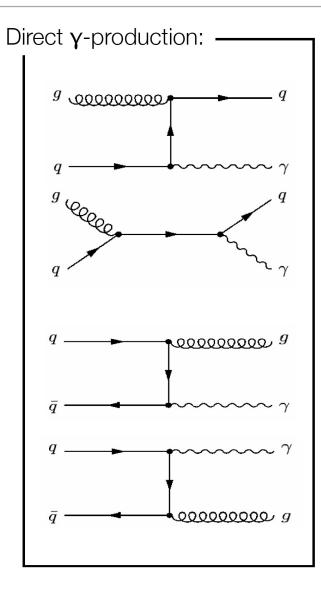

Dijet mass

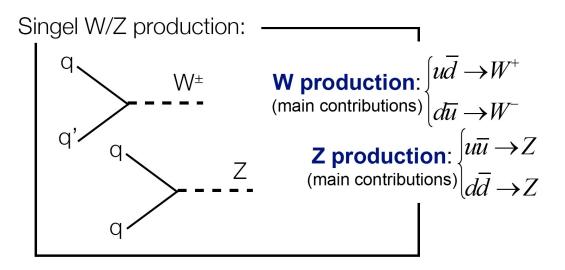
Search for numerous resonances BSM:

string resonance, excited quarks, axi-gluons, colorons, E6 diquarks, W' and Z', RS gravitons

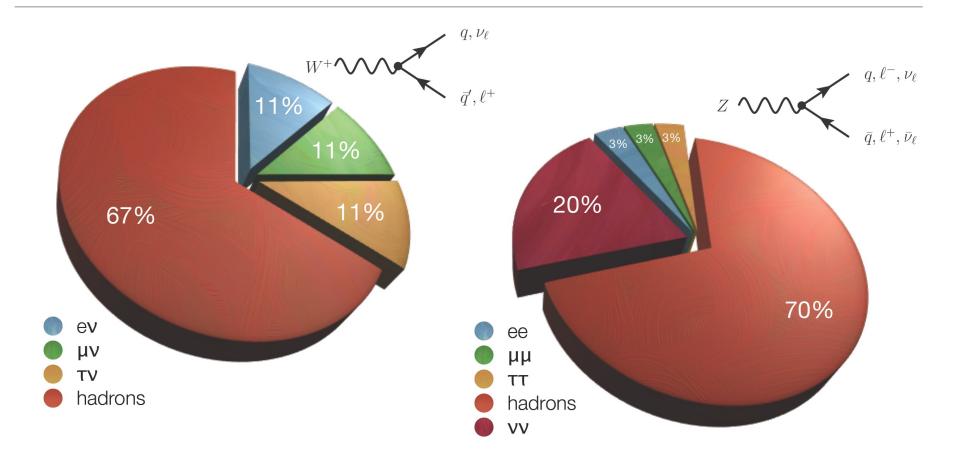

Four-parameter fit to describe QCD shape:

$$\frac{d\sigma}{dm} = p_0 \frac{\left(1 - \frac{m}{\sqrt{s}}\right)^{p_1}}{\left(\frac{m}{\sqrt{s}}\right)^{B}};$$
$$B = p_2 + p_3 \left(\frac{m}{\sqrt{s}}\right)$$

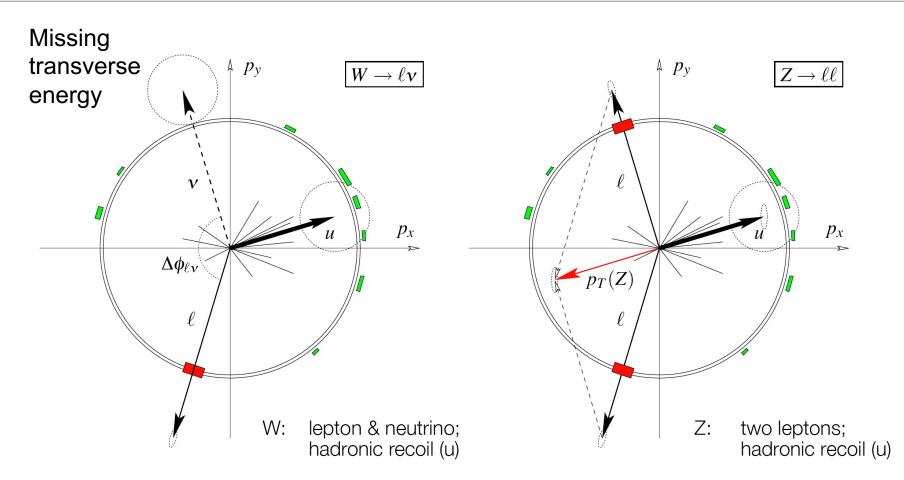

End of Lecture 2


W and Z bosons

Couse on Physics at the LHC


Vector boson production

- At LHC energies these processes take place at low values of Bjorken-x
- Only sea quarks and gluons are involved
- At EW scales sea is driven by the gluon,
 i.e. x-sections dominated by gluon uncertainty
- ➡ Constraints on sea and gluon distributions


W and Z boson decays

Leptonic decays (e/µ): very clean, but small(ish) branching fractions Hadronic decays: two-jet final states; large QCD dijet background Tau decays: somewhere in between...

W and Z boson signatures

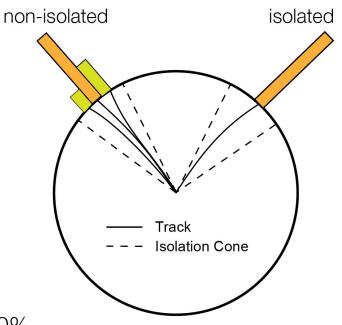
[CERN-OPEN-2008-020]

Additional hadronic activity → recoil, not as clean as e⁺e⁻ Precision measurements: only leptonic decays

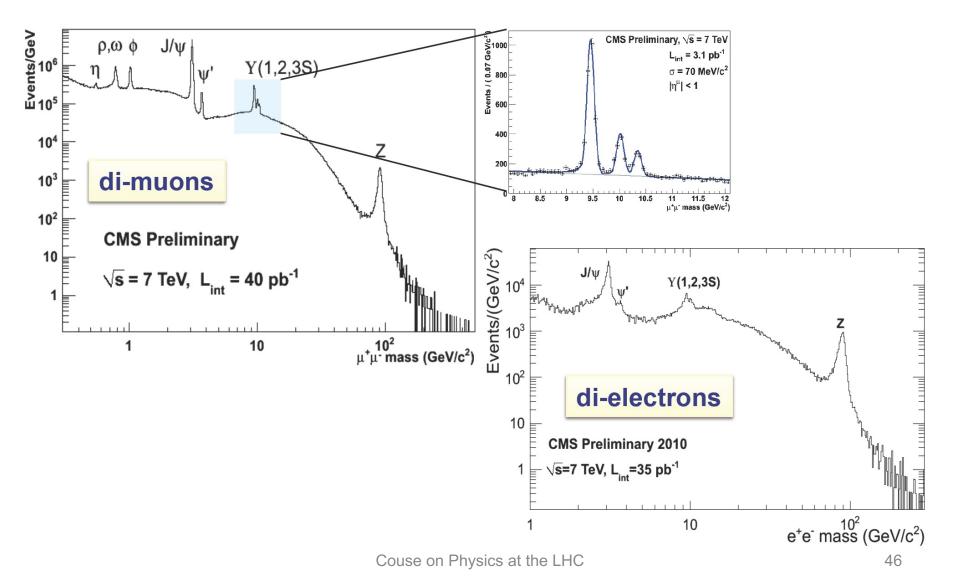
Couse on Physics at the LHC

Starting point for many hadron collider analyses: isolated high-p_T leptons → discriminate against QCD jets ...

QCD jets can be mis-reconstructed as leptons ("fake leptons")

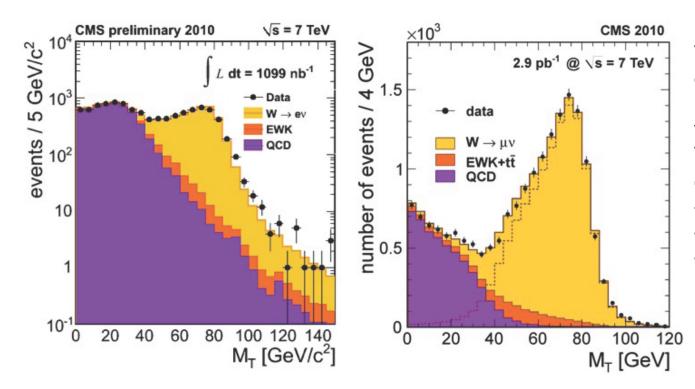

QCD jets may contain real leptons e.g. from semileptonic B decays $[B \rightarrow IvX]$

→ soft and surrounded by other particles


"Tight" lepton selection ...

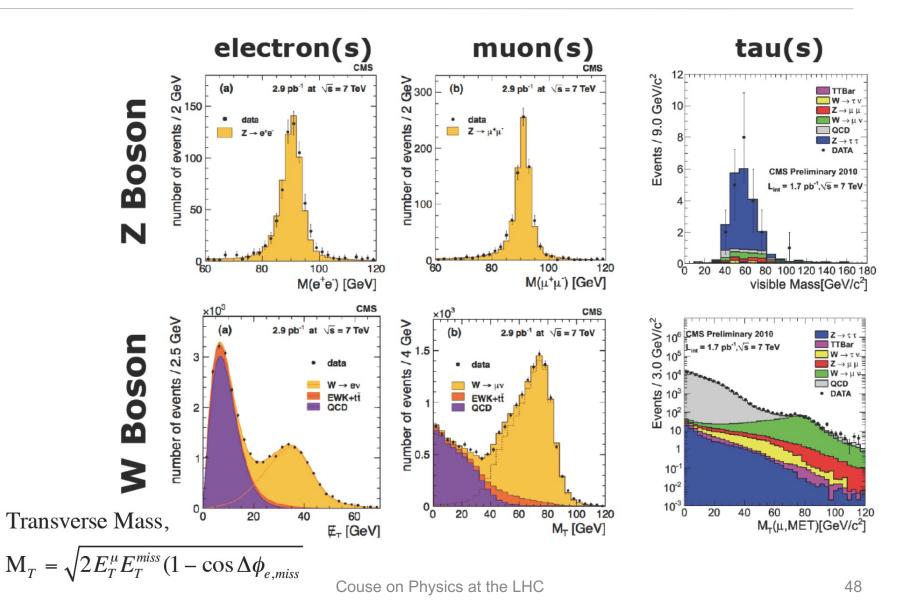
Require e/μ with $p_T > (at least) 20 \text{ GeV}$ Track isolation, e.g. $\sum p_T$ of other tracks in cone of $\Delta R=0.1$ less than 10% of lepton p_T

Calorimeter isolation, e.g. energy deposition from other particles in cone of ΔR =0.2 less than 10%

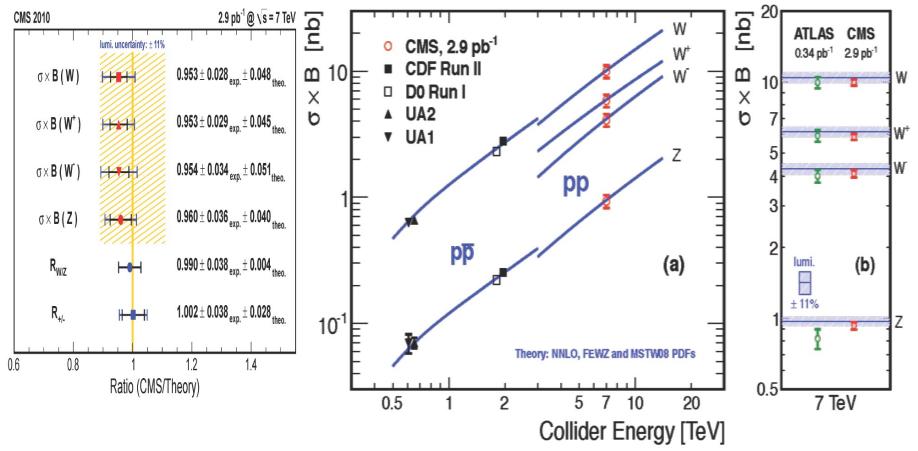

Dilepton mass spectrum at 7 TeV

Example: CMS W Analysis

Select isolated electrons and muons ... [muons: $p_T > 9$ GeV; electrons: $p_T > 20$ GeV]


Investigate transverse mass ... [Use $E_{T,miss}$; $M_T = (p_{lep} + E_{T,miss})^{\frac{1}{2}}$]

The W signal yield is extracted from a binned likelihood fit to the M_T distribution. Three different contributions:


- W signal
- QCD background
- other (EWK) backgrounds.

W/Z production at 7 TeV

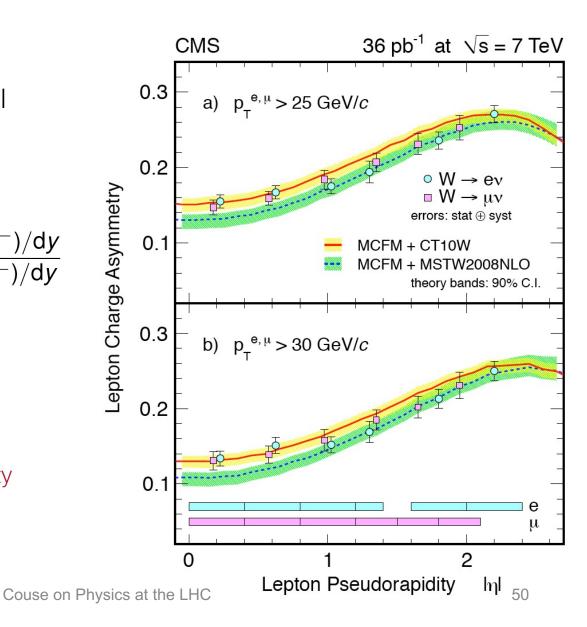
W, Z cross-section v.s. \sqrt{s}

hep-ex 1012.2466, JHEP 01 (2011) 080

W+/W- charge asymmetry

NNLO cross sections: scale uncertainties very small

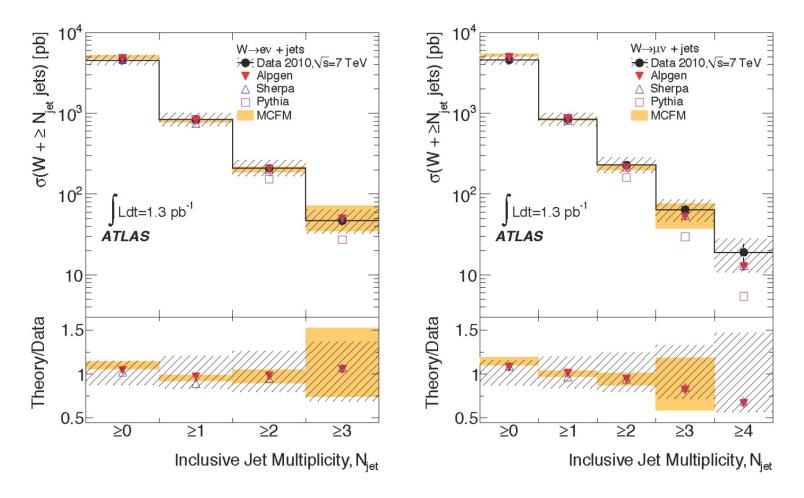
W rapidity: asymmetry [sensitivity to PDFs]


$$A_W(y) = \frac{\mathrm{d}\sigma(W^+)/\mathrm{d}y - \mathrm{d}\sigma(W^-)/\mathrm{d}y}{\mathrm{d}\sigma(W^+)/\mathrm{d}y + \mathrm{d}\sigma(W^-)/\mathrm{d}y}$$

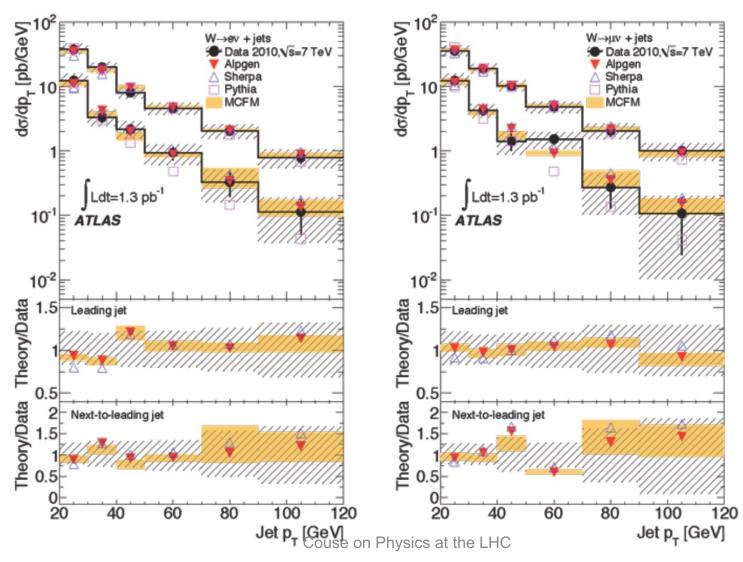
Proton-Proton Collider:

symmetry around y=0 ...

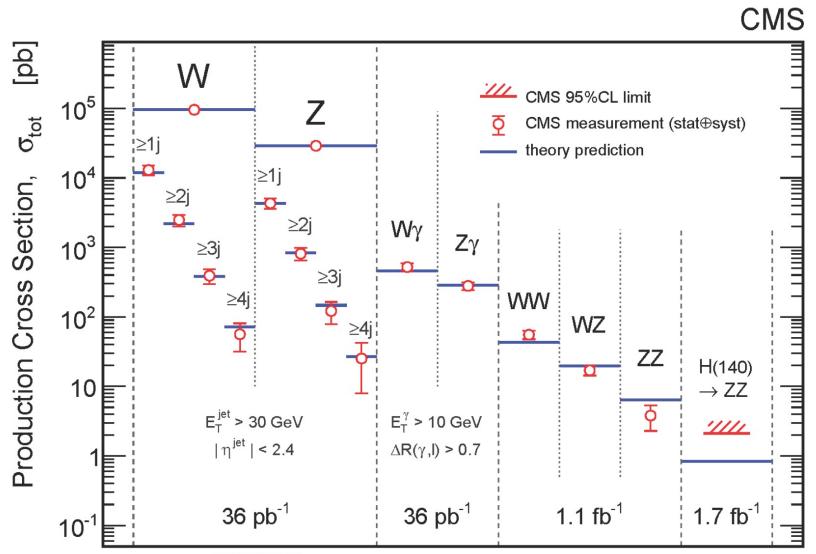
PDFs:


```
u(x) > d(x) for large x ...
more W<sup>+</sup> at positive rapidity
d/u ratio < 1 ...
always more W<sup>+</sup> than W<sup>-</sup>
```


W + Jets multiplicity


$|\eta| < 2.8$ and $p_{\rm T} > 20$ GeV

arXiv:1012.5382



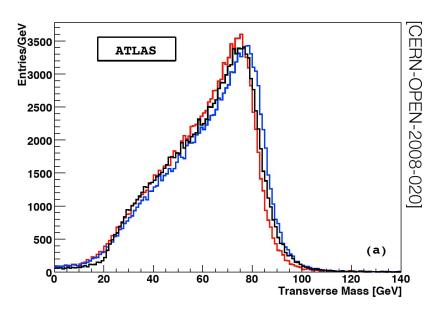
W + Jets P_T

Tails are important in several Exotica and SUSY searches

SM processes measured at LHC

JHEP10(2011)132 PLB701(2011)535 CMS-PAS-EWK-11-010 CMS-PAS-HIG-11-015 CMS-PAS-EWK-10-012 COUSE ON Physics at the LHC

W Mass Determination


Template method:

Fit templates (from MC simulation) with different m_W to data

→ W mass from best fit

Requires very good modeling of physics & detector

Templates for $m_W = 80.4 \pm 1.6 \text{ GeV}$

Ultimate LHC goal: m_W uncertainty of 15 MeV [via combination]