COMPASS experiment at CERN: recent LIP contributions

Marcin Stolarski
on behalf of LIP-Lisboa group
COMPASS at CERN

- **COmmom Muon Proton Apparatus for Structure and Spectroscopy**

- Collaboration of 12 countries and about 210 physicists

- PHASE-I data taking in 2002-2011

- Currently PHASE-II ongoing (see talk by C.Quintans)
Physics goals

• Phase I
 – muon beam program
 * gluon polarization in the nucleon
 * spin dependent structure functions
 * polarized quark distributions
 * unpolarized fragmentation functions
 – hadron beam program
 * pion polarizability
 * hadron spectroscopy
 * exotics searches (glueballs, hybrids, ...)

• Phase II
 – Transverse Momentum Dependent functions (TMDs)
 – Generalized Parton Distribution functions (GPDs)
COMPASS setup:

- DETECTOR
 - two stage spectrometer
 - 60 m length
 - 2 (3) magnets
 - about 350 detector planes

- POLARIZED TARGET
 - $^6\text{LiD (NH}_3\text{)}$ target
 - 2-3 cells (120 cm total length)
 - ± 50% (90%) polarization
 - polarization reversal every 8h-24h

- POLARIZED BEAM
 - μ^+ at 160 GeV/c
 (200 GeV/c in 2011)
 - polarization −80%

- FEATURES
 - angular acceptance: ±70 mrad
 (±180 mrad from 2006)
 - track reconstruction:
 $p > 0.5$ GeV/c
 - identification h, e, μ: calorimeters and muon filters
 - identification: π, K, p (RICH)
 $p > 2, 9, 18$ GeV/c respectively
LIP group in COMPASS

- Seniors:
 - Paula Bordalo (Group leader)
 - Catarina Quintans
 - Sérgio Ramos

- Post-docs:
 - Celso Franco
 - Luís Silva
 - Marcin Stolarski

- PhD students:
 - Ana Sofia Nunes
 - Márcia Quaresma

- Master students:
 - Gonçalo Terça
 - Miguel Vasco

- Engineer:
 - Christophe Pires
LIP-Lisboa group activities

- Analysis of COMPASS-I data (content of this talk)
 - extraction of the gluon polarization from open charm events
 - extraction of the gluon polarization from high-p_T events
 - measurement of the spin asymmetry A_1 in low x and low Q^2 region
 - measurement of hadron multiplicities and fragmentation functions

- Preparation of COMPASS-II phase
 - one of the two main institutes behind the polarized Drell-Yan (DY) measurement proposal, which was approved in 2010
 - MC studies to optimize detector setup and the dimuon trigger
 - improvements in the muon tracking reconstruction efficiency and purity
 - MC analyses of possible backgrounds to DY process in COMPASS kinematic range
 - analyses of the DY test runs

- Full responsibility of the experiment’s Detector Control System
Idea of spin dependent measurements

- Interaction of polarized photons with nucleon

- Because of angular momentum conservation, only quarks with a spin opposite to the spin of the photon can interact with it

- Spin effects are small, precise method of extraction is needed, like asymmetry measurements
Studied processes

- **Deep Inelastic Scattering (DIS)**
- Incoming and outgoing muon four-momenta are measured
- The final state X is not looked at
- The cleanest measurement

- **Semi-Inclusive Deep Inelastic Scattering (SIDIS)**
- The difference w.r.t. DIS: additional final state particle is detected
- More complicated: what is the probability that a quark of type q fragments into a hadron of type h?
- A new non perturbative object is needed - **Fragmentation Functions (FF)**
Short story of spin measurements

- First spin asymmetry measurement in SLAC, USA in 1975, done by Vernon Hughes et al.

- Results with large uncertainties were agreeing with the expectations

- Unexpected results of EMC (1987) started the so-called “spin crisis”: quarks carry only $\Delta \Sigma = 10\% \pm 15\%$ of the proton spin ($\Delta \Sigma = \Delta u + \Delta d + \Delta s$)

 - Nucl. Phys. B328 (1989), 1; cited 1422 times

- Second generation of experiments, at CERN and USA (early-mid of 90’) confirmed EMC results

- $S_p = 1/2 = 1/2 \Delta \Sigma + \Delta G + L_{q,G}$

- Third generation of experiments is trying to solve the spin puzzle, COMPASS @ CERN, HERMES @ DESY, experiments at USA in RHIC and JLab laboratories

- Fourth generation is being planed
Modern Results – COMPASS NLO QCD fit

\[\Delta \Sigma \approx 0.25 - 0.30 \]

\[\Delta G \text{ not constrained} \]

\[\text{Negative } \Delta s \text{ in the whole } x \text{ range} \]
$\Delta g/g$ measurement

- $S_p = 1/2 = 1/2 \Delta \Sigma + \Delta G + L_{q,G}$
- Gluons may carry missing spin of the proton
- Problem: photon doesn’t directly interact with gluons ($q=0$)
- In order to measure $\Delta g/g$ higher order processes in α_s must be studied, namely photon–gluon fusion (PGF) from e.g.
 - open-charm events
 - high-p_T hadron pairs
\textbf{$\Delta g/g$ measurement: COMPASS results}

- Both analyses were published last year (with outstanding contribution from LIP)
 - High-p_T - PLB 718 (2013) 922 (LO analysis)
 - Open Charm - PRD 87 (2013) 052018 (LO and NLO analyses)

- Results:
$\Delta g/g$ measurement: method improvement

- At LIP we developed a new method of $\Delta g/g$ extraction - all–p_T method
 ⇒ Reduction of the statistical error of $\Delta g/g$ by about 60% with respect to the last COMPASS publication PLB 718 (2013) 922
ΔS puzzle

- From NLO QCD fits, a negative ΔS is expected in the whole x range

- However, by selecting kaons in the final state, one enhances the contribution of strange quarks

- Examples of previous analyses:
 - HERMES analysis, PLB 666 (2008) 446
 - the curve from LSS group NLO QCD PRD 73 034023

- Clear disagreement of HERMES data with global NLO QCD fit is visible
ΔS studies at COMPASS

- The results of the SIDIS-type analysis depend on the choice of the Fragmentation Functions (FF),
 - \(D_{str}(z) \): \(\bar{s} \rightarrow K^+ \) and c.c.
 - \(D_{fav}(z) \): \(u \rightarrow K^+ \) and c.c.
 - \(D_{unf}(z) \): \(\bar{u}, d, \bar{d} \rightarrow K^+ \) and c.c.

- FF can be studied by analysing hadron multiplicities, *e.g.*, kaon multiplicity sum

- \(5 \frac{dN^K(x)}{dN^{DIS}(x)} \approx \int D^K_Q(z)dz + S(x)/Q(x) \int D^K_S(z) \)
\(\Delta S \) puzzle: comparison of experimental results

- Clear disagreement is seen between preliminary COMPASS results and HERMES published data
- The discrepancy between the two experiments is being investigated
Asymmetry A_1^p at low x and low Q^2

- The low x region is very interesting because of high parton densities in the nucleon
- However, in COMPASS there is a strong correlation between x and Q^2
- Low x measurement is in the non-perturbative region of QCD
A_1^p at low x and low Q^2 - COMPASS results

- The A_1^p is positive, about 1% in the low x region
- For the first time non zero spin effects are observed for so low x_{Bj}
- Measurements at the two beam energies give similar results as functions of x_{Bj} and ν
A_1^p at low x and low Q^2:
comparison of experimental results

- The statistical precision obtained at COMPASS is by a factor of 10-20 better than in the previous experiments
Summary & Conclusions

• COMPASS Phase I data taking is finished

• However,
 – new results are being published
 – analysis methods are being improved

• LIP group has an important role in COMPASS data analyses and in the preparation of the following physics program

⇒ At the next International Conference DIS2014, 3 members of LIP group will give oral presentations of their work on behalf of the COMPASS Collaboration