COMPASS experiment at CERN: recent LIP contributions

Marcin Stolarski on behalf of LIP-Lisboa group

COMPASS at **CERN**

COMPASS at **CERN**

• **CO**mmon **M**uon **P**roton **A**pparatus for **S**tructure and **S**pectroscopy

- Collaboration of 12 countries and about 210 physicists
- PHASE-I data taking in 2002-2011
- Currently PHASE-II ongoing (see talk by C.Quintans)

Physics goals

- Phase I
 - muon beam program
 - * gluon polarization in the nucleon
 - * spin dependent structure functions
 - * polarized quark distributions
 - * unpolarized fragmentation functions
 - hadron beam program
 - * pion polarizability
 - * hadron spectroscopy
 - * exotics searches (glueballs, hybrids, ...)
- Phase II
 - Transverse Momentum Dependent functions (TMDs)
 - Generalized Parton Distribution functions (GPDs)

COMPASS setup:

- DETECTOR
 - two stage spectrometer
 - 60 m length
 - -2 (3) magnets
 - about 350 detector planes

- POLARIZED TARGET
 - ⁶LiD (NH₃) target
 - 2-3 cells (120 cm total length)
 - $-\pm 50\%$ (90%) polarization
 - polarization reversal every 8h-24h
 - POLARIZED BEAM
 - μ^+ at 160 GeV/c (200 GeV/c in 2011)
 - $-\,$ polarization –80 %
- FEATURES
 - angular acceptance: $\pm 70 \mod (\pm 180 \mod 2006)$
 - track reconstruction: p > 0.5 GeV/c
 - identification h, e, μ : calorimeters and muon filters
 - identification: π , K, p (RICH) p > 2, 9, 18 GeV/c respectively

LIP group in COMPASS

- Seniors:
 - Paula Bordalo (Group leader)
 - Catarina Quintans
 - Sérgio Ramos
- Post-docs:
 - Celso Franco
 - Luís Silva
 - Marcin Stolarski
- PhD students:
 - Ana Sofia Nunes
 - Márcia Quaresma
- Master students:
 - Gonçalo Terça
 - Miguel Vasco
- Engineer:
 - Christophe Pires

LIP-Lisboa group activities

- Analysis of COMPASS-I data (content of this talk)
 - extraction of the gluon polarization from open charm events
 - extraction of the gluon polarization from high- p_T events
 - measurement of the spin asymmetry A_1 in low x and low Q^2 region
 - measurement of hadron multiplicities and fragmentation functions
- Preparation of COMPASS-II phase
 - one of the two main institutes behind the polarized Drell-Yan (DY) measurement proposal, which was approved in 2010
 - MC studies to optimize detector setup and the dimuon trigger
 - improvements in the muon tracking reconstruction efficiency and purity
 - MC analyses of possible backgrounds to DY process in COMPASS kinematic range
 - analyses of the DY test runs
- Full responsibility of the experiment's Detector Control System

Idea of spin dependent measurements

• Interaction of polarized photons with nucleon

- Because of angular momentum conservation, only quarks with a spin opposite to the spin of the photon can interact with it
- Spin effects are small, precise method of extraction is needed, like asymmetry measurements

Studied processes

- Deep Inelastic Scattering (DIS)
- Incoming and outgoing muon fourmomenta are measured
- The final state X is not looked at
- The cleanest measurement

- Semi-Inclusive Deep Inelastic Scattering (SIDIS)
- The difference w.r.t. DIS: additional final state particle is detected
- More complicated: what is the probability that a quark of type *q* fragments into a hadron of type *h*?
- A new non perturbative object is needed - Fragmentation Functions (FF)

Short story of spin measurements

- First spin asymmetry measurement in SLAC, USA in 1975, done by Vernon Hughes et al.
- Results with large uncertainties were agreeing with the expectations
- Unexpected results of EMC (1987) started the so-called "spin crisis": quarks carry only $\Delta \Sigma = 10\% \pm 15\%$ of the proton spin ($\Delta \Sigma = \Delta u + \Delta d + \Delta s$)
 - Phys. Lett. B206(1988), 364; cited 1659 times
 - Nucl. Phys. B328(1989), 1; cited 1422 times
- Second generation of experiments, at CERN and USA (early-mid of 90') confirmed EMC results
- $S_p = 1/2 = 1/2\Delta\Sigma + \Delta G + L_{q,G}$
- Third generation of experiments is trying to solve the spin puzzle, COMPASS @ CERN, HERMES @ DESY, experiments at USA in RHIC and JLab laboratories
- Fourth generation is being planed

Modern Results – COMPASS NLO QCD fit

- ΔG not constrained
- Negative Δs in the whole x range

$\Delta g/g$ measurement

- $S_p = 1/2 = 1/2\Delta\Sigma + \Delta G + L_{q,G}$
- Gluons may carry missing spin of the proton
- Problem: photon doesn't directly interact with gluons (q=0)
- In order to measure $\Delta g/g$ higher order processes in α_s must be studied, namely photon–gluon fusion (PGF) from *e.g.*
 - open-charm events
 - high- p_T hadron pairs

$\Delta g/g$ measurement: COMPASS results

- Both analyses were published last year (with outstanding contribution from LIP)
 - High- p_T PLB **718** (2013) 922 (LO analysis)
 - Open Charm PRD 87 (2013) 052018 (LO and NLO analyses)
- Results:

$\Delta g/g$ measurement: method improvement

• At LIP we developed a new method of $\Delta g/g$ extraction - all $-p_T$ method \Rightarrow Reduction of the statistical error of $\Delta g/g$ by about 60% with respect to the last COMPASS publication PLB 718 (2013) 922

ΔS **puzzle**

- From NLO QCD fits, a negative ΔS is expected in the whole x range
- However, by selecting kaons in the final state, one enhances the contribution of strange quarks
- Examples of previous analyses:
 - HERMES analysis, **PLB 666** (2008) 446
 - the curve from LSS group NLO QCD $\mathbf{PRD}\ 73\ 034023$
- Clear disagreement of HERMES data with global NLO QCD fit is visible

ΔS studies at COMPASS

- The results of the SIDIS-type analysis depend on the choice of the Fragmentation Functions (FF),
 - $D_{str}(z): \bar{s} \to K^+$ and c.c.
 - $D_{fav}(z): u \to K^+$ and c.c.
 - $D_{unf}(z): \bar{u}, d, \bar{d} \to K^+ \text{ and c.c.}$
- FF can be studied by analysing hadron multiplicities, e.g., kaon multiplicity sum
- $5\frac{dN^{K}(x)}{dN^{DIS}(x)} \approx \int D_Q^K(z)dz + S(x)/Q(x) \int D_S^K(z)$

ΔS puzzle: comparison of experimental results

- Clear disagreement is seen between preliminary COMPASS results and HERMES published data
- The discrepancy between the two experiments is being investigated

Asymmetry A_1^p at low x and low Q^2

- The low x region is very interesting because of high parton densities in the nucleon
- However, in COMPASS there is a strong correlation between x and Q^2
- Low x measurement is in the non-perturbative region of QCD

A_1^p at low x and low Q^2 - COMPASS results

- The A_1^p is positive, about 1% in the low x region
- For the first time non zero spin effects are observed for so low x_{Bj}
- Measurements at the two beam energies give similar results as functions of x_{Bj} and ν

A_1^p at low x and low Q^2 : comparison of experimental results

• The statistical precision obtained at COMPASS is by a factor of 10-20 better than in the previous experiments

Summary & Conclusions

- COMPASS Phase I data taking is finished
- However,
 - new results are being published
 - analysis methods are being improved
- LIP group has an important role in COMPASS data analyses and in the preparation of the following physics program
 → At the next International Conference DIS2014, 3 members of LIP group

 \Rightarrow At the next International Conference DIS2014, 3 members of LIP group will give oral presentations of their work on behalf of the COMPASS Collaboration