Search for the Standard Model Higgs boson in ttH production

S.Amor Santos, R.Gonçalo, A.Onofre

<u>samor@cern.ch</u>

On behalf of the LIP ttH Team

C •

1

Jornadas do LIP

Lisboa

21 March 2014

Introduction

Higgs Boson-like particle discovered at the LHC by both ATLAS and CMS in July 2012!

What do we know so far?

- Higgs mass = $125.5 \pm 0.6 \text{ GeV}$

- ggH production and H $\rightarrow \gamma\gamma$ decays yield indirect evidence of ttH coupling;

- Evidence for fermionic decay modes:

ATLAS: $H \rightarrow \tau \tau (4.1 \sigma)$ CMS: combination of $H \rightarrow \tau \tau$ and $H \rightarrow$ bb (4.0 σ)

Why ttH?

- Top Yukawa coupling to Higgs predicted ~1
- Role evident from $M_W\text{-}M_t$ constraints on M_H
- ttH => only production mode directly sensitive to top-Higgs Yukawa coupling: $\sigma_{t\bar{t}H} \propto g_{t\bar{t}H}^2$
- Sensitive to New Physics (via higher-dim. operators)
- Allow to probe New Physics in loop-induced couplings (ggH, H $\gamma\gamma$, HZ γ)

ttH Topology & Event Selection

For low M_H , $H \rightarrow bb$ is the dominant decay Consider Top and W decays:

l+jets

- Exactly 1 lepton with pT > 25 GeV & $|\eta|$ < 2.5;
- At least 4 jets pT>25GeV & |η|<2.5, with at least 2 b-tagged ones;
- Veto of dilepton events;

Dilepton

- Exactly 2 leptons of opposite charge: leading e±: pT>25GeV & $|\eta|$ <2.5 subleading e±: pT>15GeV
 - $\mu \pm : pT > 25 GeV \& |\eta| < 2.5$
- At least 2 jets, with at least 2 b-tagged ones;
- For eµ: H_T > 130 GeV
- For ee & $\mu\mu$: M_|| > 15 GeV & |M_|| 91 GeV| <= 8 GeV

B-tagged Jets with 70% efficiency 1% of light-jets mistag rate

Data at $\sqrt{s}=8TeV$ recorded in 2012: $\mathcal{L}_{int} = 20.3 \text{ fb}^{-1}$

Decays of a 125 GeV Standard-Model Higgs boson

Analysis Strategy

Divide the events according to jet and b-tag multiplicity:

- Improve sensitivity by keeping separate regions with different S/\sqrt{B}
- Maximising statistical power
- Signal depleted regions used to control backgrounds normalisation
- Different topologies to control/reduce systematic uncertainties

Choose suitable discriminant variable in each channel

Perform hypothesis testing including in-situ constraining of systematic uncertainties

Background Processes

Similar final state topologies that can mimic ttH signal:

- tt+jets: Powheg+Pythia
 =>including tt+HF (same signature as ttH)
- ttZ, ttW: Madgraph+Pythia
- W+jets: Alpgen+Pythia
- Z+jets: Alpgen+Herwig
- Dibosons: Alpgen+Herwig
- Single top: Powheg/AcerMC + Pythia
- Multijet: data driven

Extensive and detailed background studies for better separation of the ttH signal

Analysis Method

Divide the events according to nJets/nTag simultaneous template fit to multiple regions:

l+jets	2 b-tags	3 b-tags	>= 4 b-tags		
4 jets	H_T^had	H_T^had	H_T^had		
5 jets	H_T^had	NN	NN		
>=6 jets	H_T^had	NN	NN		

dilepton	2 b-tags	3 b-tags	>= 4 b-tags
2 jets	Η _T		
3 jets	Η _T	NN	
>=4 jets	Η _T	NN	NN

Different discriminants used in various regions:

- Background regions using as unique analysis variable: H^{Thad} = scalar sum of jets P^T (l+jets) H^T = scalar sum of jets and leptons P^T (dilepton)
- I+jets, 5 jets, 3 b-tags region train a NN tt+bb & tt+cc versus tt+light jets and use its output as discriminant variable
- Signal regions using multivariate discriminants for signal extraction: train a NN ttH versus ttbar in each of the regions and use its output as discriminant variable

NN Outputs in Signal Regions

l+jets

- I+jets and dilepton fits consistent with each other
- Fit reduces background uncertainty by a factor ~5-6 in most sensitive channels
- Results here coming from combined S+B fit

Results

95% CL upper limit on σ/σ_{SM}	observed	-2σ	-1 <i>σ</i>	median	+1 σ	+2 σ	median ($\mu = 1$)
Single Lepton	4.2	1.7	2.2	3.1	4.4	6.0	3.9
Dilepton	7.0	2.3	3.1	4.3	6.1	8.4	5.1
Combination	4.1	1.4	1.9	2.6	3.6	5.0	3.4

talk at moriond yesterday

Conclusions

- A search was performed for Higgs boson produced is association with a top quark pair
- Most sensitive ttH, $H \rightarrow bb$ result at the LHC:

Observed limit: 4.1 x SM Expected limit: 2.6 x SM Best fit µ =1.7±1.4

CMS @ 8 TeV combination of I+jets, dilepton and τ channels: obs (exp) = 5.2 (4.1) @ mH=125GeV CMS-PAS-HIG-13-019

Most sensitive ttH search in ATLAS for the moment:

ttH, $H \rightarrow \gamma \gamma$: obs(exp)=4.7(5.4) @mH=126.8GeV ATLAS-CONF-2013-080

 Further improvements expected as the analysis moves to publication in the near future

ttH Work & Plans at LIP

- One year to prepare run-II analyses
- FCT-funded exploratory project to develop ttH studies:
 - Building up the team hiring 1 new postdoc + 1 master student
 - International team involving theorists and ATLAS experimentalists
 - Local team involves LIP-Lisbon + Coimbra + Minho
 - In sync with local expertise in Higgs, top and jets
- Project aims:
 - Search for novel variables to discriminate background
 - Explore reconstruction methods reduce combinatorial background
 - Exploit ttH potential for measuring Higgs properties and bring new knowledge on the Higgs sector:

e.g. CP sensitivity complementary to H->ZZ

- Ongoing work:
 - Focusing on dilepton ttH, H->bb
 - Data-driven studies of Z+jets background for ttH analysis
 - Improving analysis software
 - Studies of jet reconstruction
- Building up know-how in local team aiming for run II analysis

Thanks!

Backup Slides

Background Processes

Extensive and detailed background studies for better separation of the ttH signal:

- Main Background tt+jets:
 - top pT and tt pair pT improved by correcting MC to match dedicated measurement @√s=7TeV (ATLAS-CONF-2013-099)
 - Modelling of tt+HF jets (normalisation & kinematics), comparable to dedicated ME-PS MCs such as Madgraph.
 - Rate of tt+bb and tt+cc calibrated to data using background-enriched bins in signal regions.
- Z+jets data driven: ZpT spectrum & HF component

Multivariate Discriminants: NN

NN is used to discriminate signal from the background in the topologies with significant expected ttH signal contribution

Variables considered:

- object kinematics: pT and η of the lepton and each jet
- global event variables: HT^{had}, Meff, N^{jets}pT>40GeV, ET^{miss}
- event shape variables: the centrality and the Fox-Wolfram moments
- object pair properties: pT^{bb} , $M_{bb}{}^{min\Delta R}$, $\Delta R_{bb}{}^{avg}$ of the jet pair with the largest vectorial sum pT, the largest invariant mass or the smallest ΔR

HT Pre- and Post-fit Distributions

l+jets

dilepton

