

ATLAS Overview

Patricia Conde Muíño (LIP-Lisboa)

QUADRO DE REFERÊNCIA ESTRATÉGICO NACIONAL

Portuguese ATLAS team

National group: LIP (Lisbon, Coimbra, Minho) FCUL, FCTUC, U. Minho, CFNUL CEFITEC/UNL, INESC, CFMC AdI engineers training program P. Conde Muíño

- Physics Analysis and Performance
 - Top quark (A. Onofre, F. Veloso) Exotic searches (N. Castro) Higgs (R. Gonçalo, P. Conde) Heavy Ions (H. Santos) Jets/Etmiss performance & calibration (J. Maneira)
- M&O and Performance
 TileCal (A. Gomes)
 Jet Trigger (R. Gonçalo, P. Conde)
 ALFA detector (A. Maio)
- Detector Upgrades
 TileCal (A. Gomes)
 High Level Trigger (P. Conde)
 AFP (P. Conde)

GRID computing (H. Wolters)

TileCal hadronic calorimeter
 Laser calibration & monitoring system
 DCS
 Software
 Performance
 Operations

Jet trigger

Algorithm development & maintenance

Performance studies in pp & HI

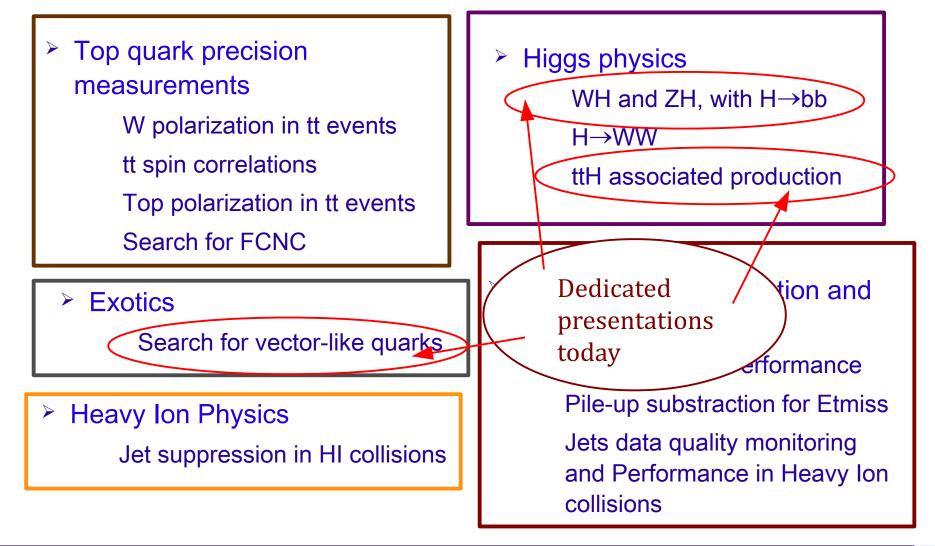
Heavy lons trigger menu

Hadronic calibration trigger (for E/p studies)

ALFA luminosity detector DCS GRID distributed computing
 Sites/services monitoring

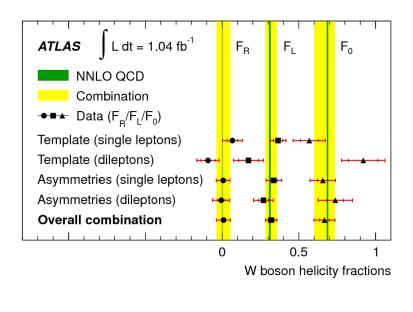
Operations/shifts

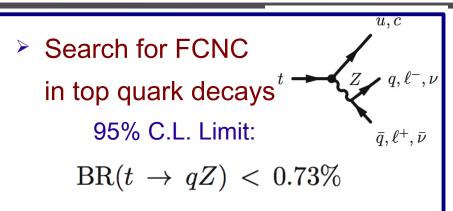
Current Physics & Performance Studies

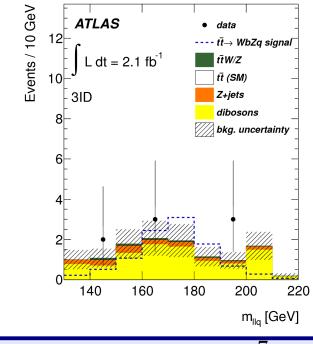

- Top quark precision measurements
 - W polarization in tt events
 - tt spin correlations
 - Top polarization in tt events
 - Search for FCNC
 - Exotics
 - Search for vector-like quarks
- Heavy Ion Physics

Jet suppression in HI collisions

- Higgs physics WH and ZH, with $H \rightarrow bb$ $H \rightarrow WW$ ttH associated production
- Jet and Etmiss calibration and Performance
 - Jet Calibration Performance
 - Pile-up subtraction for Etmiss
 - Jets data quality monitoring and Performance in Heavy Ion collisions

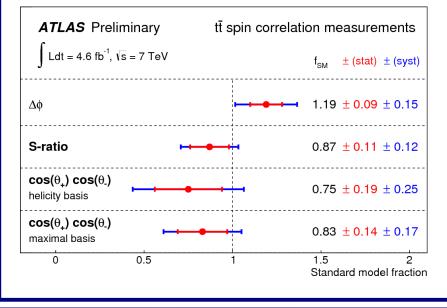

Physics and Performance Studies





Top quark physics

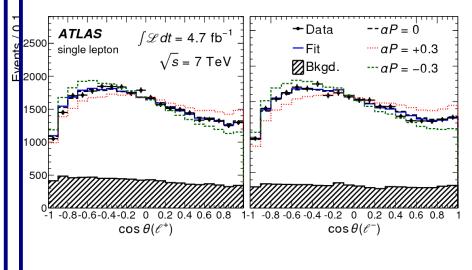
- W polarization in tt events Reflects the V-A Wtb vertex Sensitive to BSM physics
- Measure angular distribution of l⁺ in the W rest frame



Top quark physics

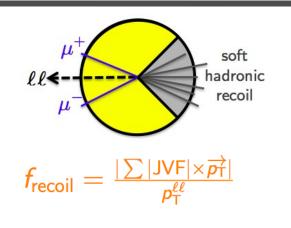
tt spin correlations

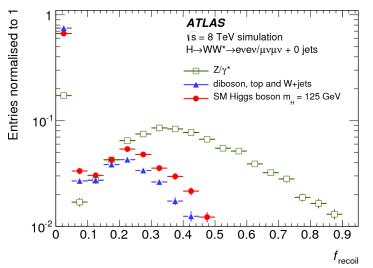
Test precise predictions of tt production & decays


$$A = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$$

Top quark polarization in tt events

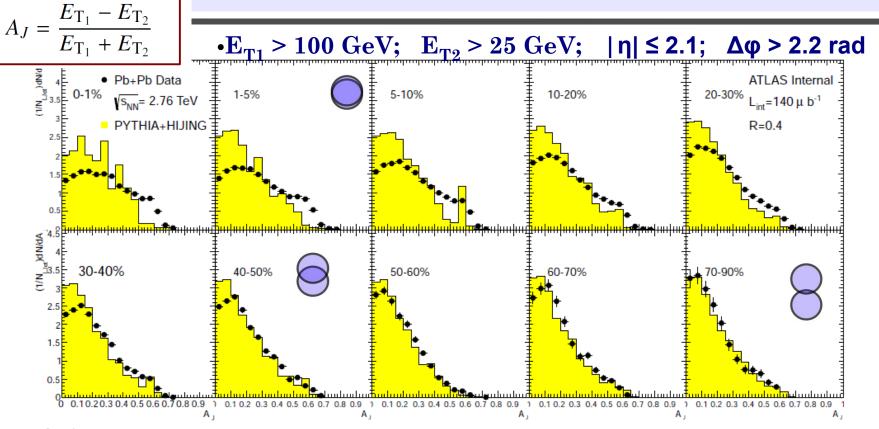
> QCD parity conservation + unpolarized initial state ⇒top quark unpolarized


Study polar angle of leptons in top quark's rest frame



P. Conde Muíño

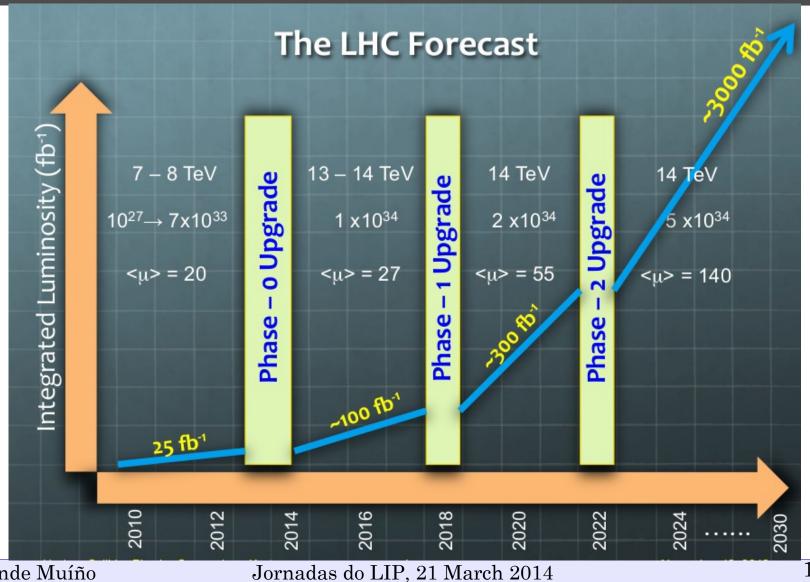

H→WW→ℓvℓv analysis



- Same flavour channel
 - Improved Z/Drell-Yan background rejection! This channel contributes with additional 5-10% significance
- > Signal strength: μ = 0.99 ^{+0.31} -0.28

compatible with SM expectations

Jet suppression in Heavy Ion Collisions



Other activities:

- Preparation of jet trigger menu of the p+Pb run and jet trigger performance
- Development of the jet data quality monitoring in the Pb+Pb and p+Pb runs;
- Offline jet reconstruction in Pb+Pb, p+Pb and p+p (@2.76 TeV) collisions;
- b-tagging in Pb+Pb collisions.

LHC Upgrade Schedule

P. Conde Muíño

11

ATLAS Detector Upgrades

LS1 -> PHASE 0
ℒ=10 ³⁴ cm ⁻² s ⁻¹ <μ>=24
100 fb⁻¹ (2014-2017)

- 4th Pixel Detector Layer (IBL)
- Pixel Detector improvements
- · Topological L1 triggers
- Silicon tracker cooling system replacement
- Muon Endcap Extension chambers completion
 - ۲
- · Tile laser system
- Tile D in L1 muon trigger
- · Tile DCS

LS2 → PHASE 1 ℒ = 2x10³⁴cm⁻²s⁻¹ <µ>=50 350 fb⁻¹ (2019-2021)

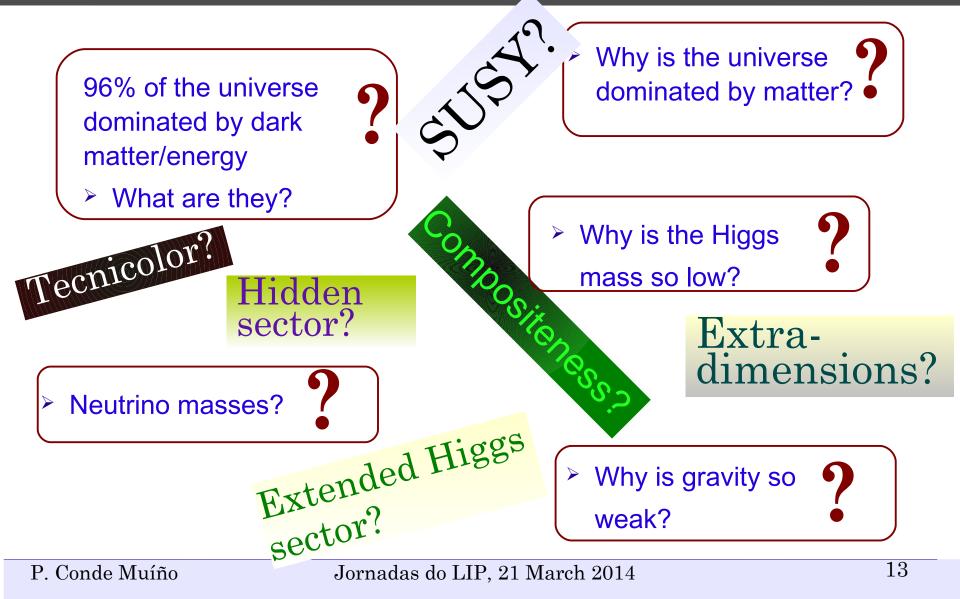
- New Muon Small
 Wheel detector
- Upgrade of the central L1 trigger processor
- L1 Calo granularity increase

۲

- · AFP detector
- · HLT jet trigger
- Tile gap/crack
 scintillators
 Tile DCS

LS3 → PHASE 2 ℒ=5x10³⁴cm⁻²s⁻¹<µ>=140 3000 fb⁻¹ (2023-2030)

- New "All Silicon" tracker
- L0-L1 trigger separation
- Track info at L1
- Upgrade of the calorimeter readout
- Upgrade of the muon spectrometer

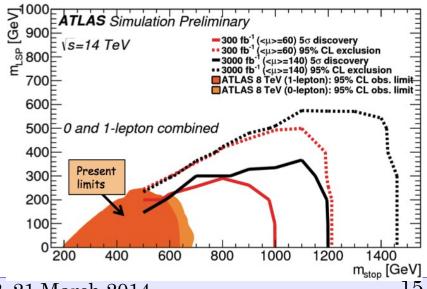

۲

Tile HV distributor system
Tile DCS


P. Conde Muíño

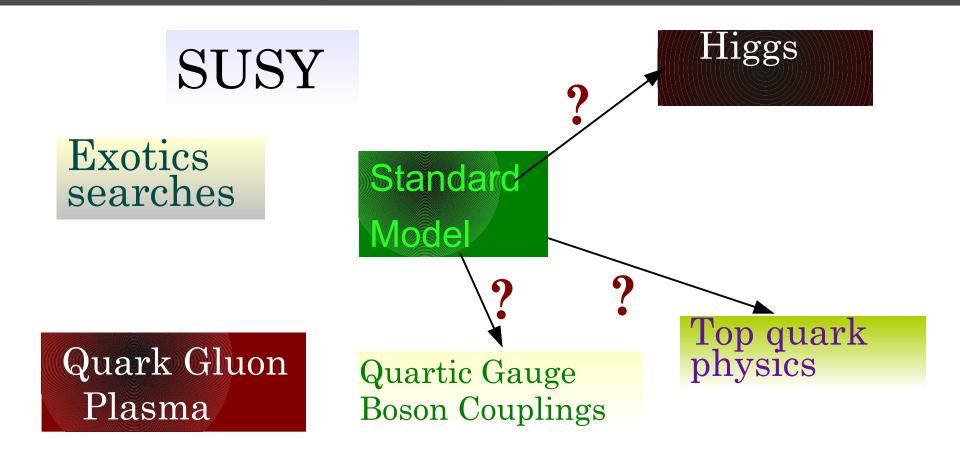
The SM is incomplete

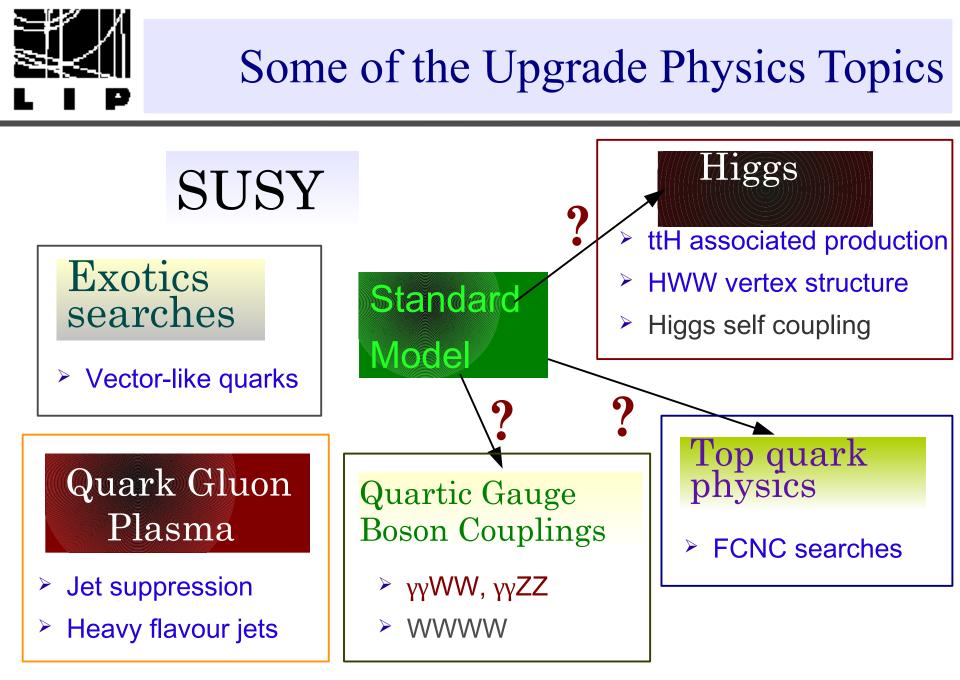
Examples of HL-LHC expectations


Snowmass 2013

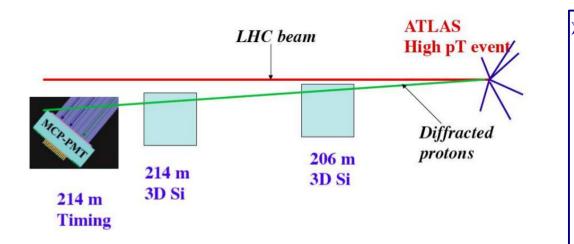
ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}$: [Ldt=300 fb⁻¹; [Ldt=3000 fb⁻¹] κ_{gZ} λ_{wz} $\boldsymbol{\lambda}_{tg}$. $\lambda_{\tau Z}$ $\lambda_{\mu Z}$ $\boldsymbol{\lambda}_{gZ}$ $\lambda_{\gamma Z}$ →0.78 $\lambda_{(Z\gamma)Z}$ 0.1 0.2 0.3 0 $\Delta \lambda_{XY} = \Delta \left(\frac{\kappa_X}{\kappa_Y} \right)$

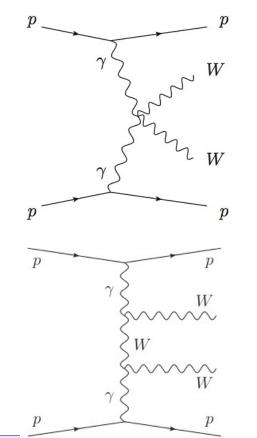
Higgs couplings


Model $\Delta \kappa_{\rm h}$ $\Delta \kappa_{v}$ Δκ., Singlet mixing 6% 6% 6% 2HDMs 1% 1% 10% Composite Higgs -3% -9% -(3-9)% Vector top partner -2% 1% -2% Decoupling MSSM -0.0013% <1.5% 1.6%


SUSY searches

P. Conde Muíño




P. Conde Muíño

Quartic Gauge Boson Couplings & AFP

- QGBC introduced in the SM due to the non abelian nature of the EW symmetry
- Very precise predictions: WWWW, yyWW, WWZZ exist ZZZZ, yyZZ: only at loop level
- Might be modified by BSM physics!

Forward proton tagging converts the LHC in a yy collider!

- > ATLAS experiment
 - Finalizing the Run I Physics Studies
 - Preparing for the new run and the detector Upgrades to exploit the HL-LHC era
- Portuguese ATLAS team contributes to
 - **Detector M&O**
 - **Physics studies**
 - Top quark precision measurements
- Higgs Physics

Exotic searches

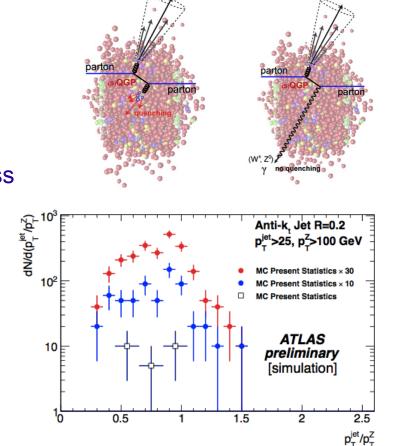
Heavy lons

- **Detector Upgrade**
- And we are prepared to exploit the physics capabilities of the HL-LHC

Ongoing PhD Thesis

- > $H \rightarrow WW \rightarrow \ell_V \ell_V$ searches (J. Miguéns)
- > Search for H \rightarrow bb in WH associated production channel (A. Palma)
- ttH searches (S. Santos)
- Search for FCNC in top quark decays (Bruno Galhardo)
- Search for vector-like quarks (Juan Pedro Araque)
- Search for Hbb in the ZH associated production channel (M. Sousa)
- Search for Hbb with MVA techniques (R. Pedro)
- Development of boosted jet triggers for Higgs searches (A. Delgado)

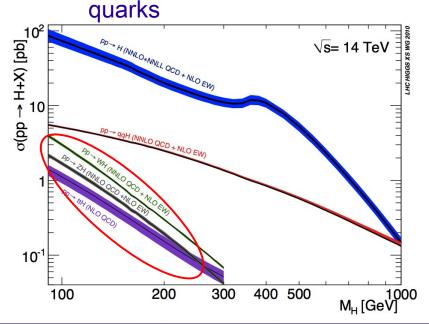
Backup

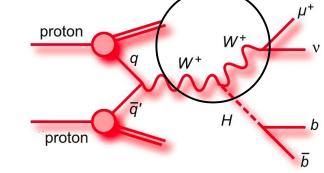

Heavy Ion Physics for the Upgrade

- Pki Run II: 5-10 times higher stats! Pb-Pb ~1nb⁻¹ @ √s_{NN} ~ 5.1 TeV, p-Pb, pp reference at 5.1 TeV
- Run III, IV: requested >10 nb⁻¹ Pb-Pb p-Pb, pp, possibly light ions (e.g. Ar-Ar)
- Focus on rare probes:

Coupling with QGP medium medium-modified hadronization process

- Jets: characterization of energy loss testing ground for the multi-particle aspects of QCD probe of the medium density
- Heavy flavour:

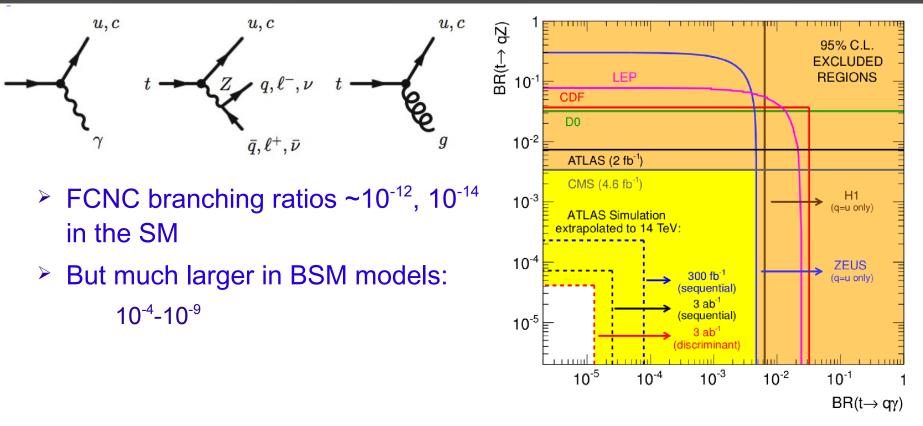

mass dependence of energy loss



In the absence of direct evidence for new physics, the Higgs will be

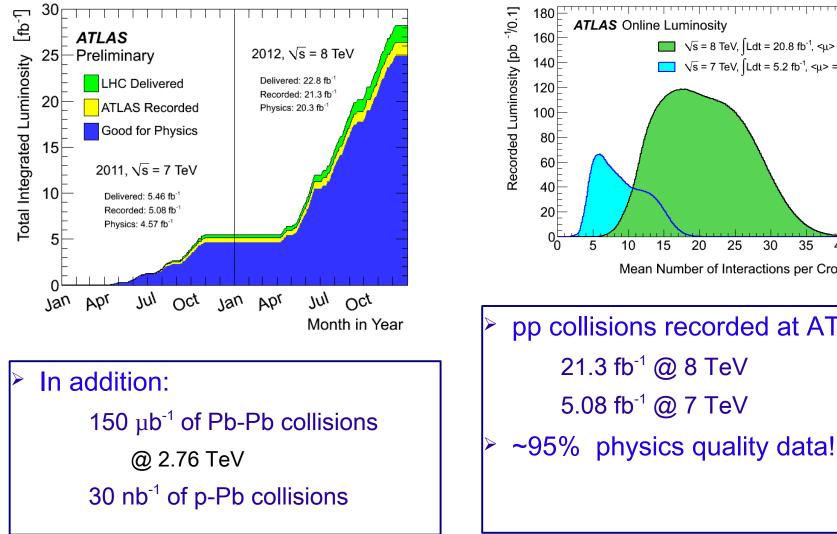
- Fundamental to test the validity of the SM!
- Probe of new physics
- Rare decay & production modes Probe Yukawa couplings to guarka

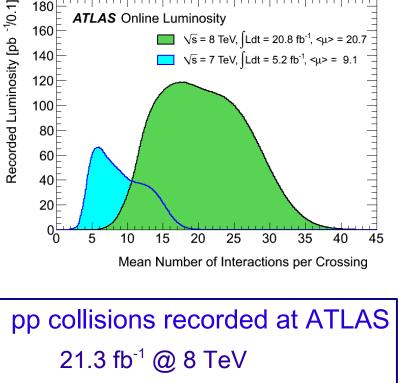
Study tensor structure of the HWW vertex in the associated production channel


Sensitive to

Beyond SM contributions

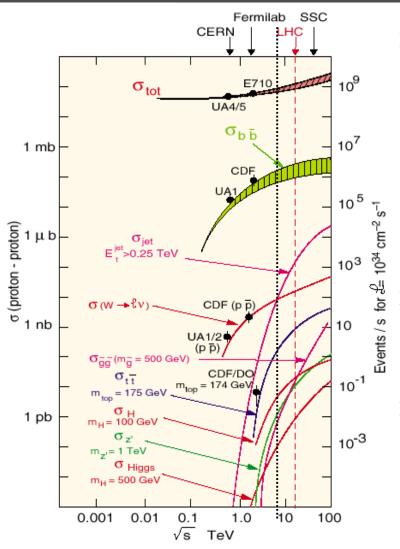
CP violation




FCNC in top quark decays

- With 300 fb⁻¹ ATLAS will improve the sensitivity to FCNC in top quark decays by ~ two orders of magnitude
- > With 3000 fb⁻¹ limits in the BR can reach $\sim 10^{-5}$ -5 $\times 10^{-5}$

Data taking during LHC Run I

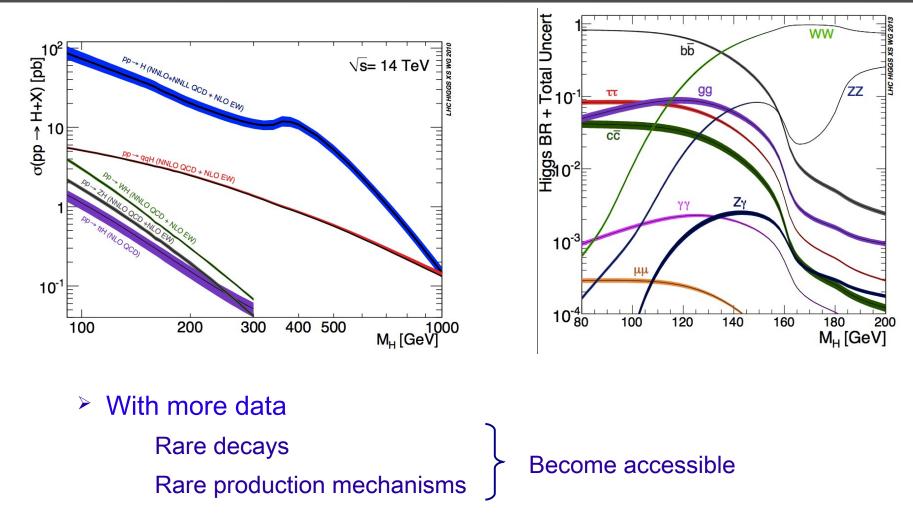


5.08 fb⁻¹ @ 7 TeV

Physics at $\sqrt{s}=14$ TeV

Moving from 8 TeV to 14 TeV the cross sections of the following processes increase by

Top quark production ~ a factor 4

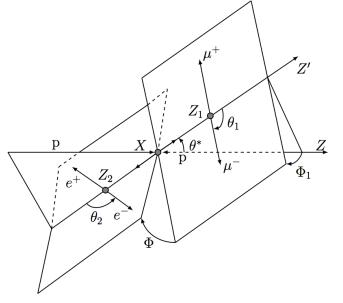

Low mass Higgs boson ~ factor 3

Exotic heavy particles, like Z', up to a factor 10


- Background processes, like W/Z boson production or jet cross sections increase more slowly
- The sensitivity improves considerably!

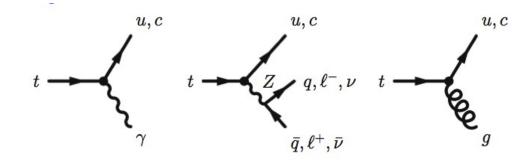
Higgs @ 14 TeV

P. Conde Muíño



$H \rightarrow ZZ$ vertex tensor structure

Generic Higgs coupling vertex to a vector boson CP-Even tree level


$$\begin{aligned} A(X \to VV) &= v^{-1} \left(g_1^{(0)} m_v^2 \epsilon_1^* \epsilon_2^* \right) & \qquad \text{component} \\ &+ g_2^{(0)} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_3^{(0)} f^{*(1),\mu\nu} f_{\mu\alpha}^{*(2)} \frac{q_\nu q^\alpha}{\Lambda^2} \\ &+ g_4^{(0)} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right) & \qquad \text{CP-Even} \\ &\text{loop induced} \end{aligned}$$

- CP-conserving tree level SM: g1=1, g2=g3 = g4 = 0
- CP violation in the Higgs sector:
 g4≠ 0, either g1 or g2, g3 ≠0
- Sensitivity to new vertex contributions through angular distributions of the Higgs decay products

FCNC in top quark decays

BR($t \rightarrow$ FCNC) in several models:

	SM	QS	2HDM	FC 2HDM	MSSM	R SUSY	TC2	RS
$t \rightarrow q\gamma$	$\sim 10^{-14}$	$\sim 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-6}$	$\sim 10^{-6}$	~ 10 ⁻⁹
$t \rightarrow qZ$	$\sim 10^{-14}$	$\sim 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$\sim 10^{-6}$	$\sim 10^{-5}$	$\sim 10^{-4}$	$\sim 10^{-5}$
t → qg	$\sim 10^{-12}$	$\sim 10^{-7}$	$\sim 10^{-4}$	$\sim 10^{-8}$	$\sim 10^{-5}$	$\sim 10^{-4}$	$\sim 10^{-4}$	$\sim 10^{-9}$

Acta Phys. Polon. B35 (2004) 2695–2710; Phys. Rev. D68 (2003) 015002; Phys. Rev. D 75 (2007) 015002

present experimental limits:

	LEP	HERA	Tevatron	LHC
$BR(t \rightarrow q\gamma)$	2.4%	0.47 %	3.2 %	_
$BR(t \rightarrow qZ)$	7.8%	30%	3.2 %	0.05%
			$2.0 \times 10^{-4} (tug)$	5.7 × 10 ^{–5} (tug)
$BR(t \rightarrow qg)$	17%	13%	$3.9 \times 10^{-3} (tcg)$	2.7×10^{-4} (tcg)

P. Conde Muíño

$$L_{\text{WEAK}} = -1/4F^{(a)}_{\mu\nu}F^{(a)\mu\nu} + i\overline{\Psi}_{\text{L}}(\gamma^{\mu}(D_{\mu}) - m)\Psi_{\text{L}}$$

 $\mathbf{F^{(a)}}_{\mu\nu} = \partial_{\mu} \mathbf{W^{a}}_{\nu} - \partial_{\nu} \mathbf{W^{a}}_{\mu} - \mathbf{g_{s}} \varepsilon_{abc} \mathbf{W^{b}}_{\mu} \mathbf{W^{c}}_{\nu}$

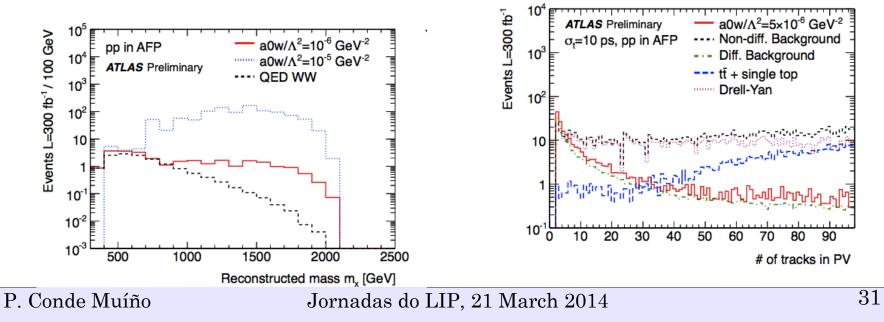
Gives rise to triple & quartic gauge boson couplings

Very precise predictions:

WWWW, yyWW, WWZZ exist ZZZZ, yyZZ: only at loop level

Might be modified by BSM physics!

Best limits in yyWW, yyZZ obtained at ATLAS with the AFP detector


Couplings	OPAL limits	Sensitivity @	$\mathfrak{d} \; \mathcal{L} = 30$ (200) fb $^{-1}$	Improve DO/CDE reculte by ~2 orders
	$[GeV^{-2}]$	5σ	95% CL	Improve D0/CDF results by ~2 orders
a_0^W/Λ^2	[-0.020, 0.020]	5.4 10 ⁻⁶	2.6 10 ⁻⁶	of magnitude
		(2.7 10 ⁻⁶)	$(1.4 \ 10^{-6})$	AFP improves ATLAS results by 2
a_C^W/Λ^2	[-0.052, 0.037]	2.0 10 ⁻⁵	9.4 10 ⁻⁶	
		(9.6 10 ⁻⁶)	(5.2 10 ⁻⁶)	orders of magnitude
a_0^Z/Λ^2	[-0.007, 0.023]	$1.4 \ 10^{-5}$	6.4 10 ⁻⁶	Reach sensitivity to extra-
		$(5.5 \ 10^{-6})$	$(2.5 \ 10^{-6})$	-
a_C^Z/Λ^2	[-0.029, 0.029]	5.2 10 ⁻⁵	2.4 10 ⁻⁵	dimensional models!
- /		(2.0 10 ⁻⁵)	$(9.2 \ 10^{-6})$	

P. Conde Muíño

Search for yyWW anomalous couplings

- Reach on anomalous couplings studied using a full simulation of the ATLAS detector, including all pile-up effects; only leptonic decays of *W*s are considered
- Signal appears at high lepton p_T and dilepton mass (central ATLAS) and high diffractive mass (reconstructed using forward detectors)
- Cut on the number of tracks fitted to the primary vertex: very efficient to remove remaining pile-up after requesting a high mass object to be produced (for signal, we have two leptons coming from the W decays and nothing else)

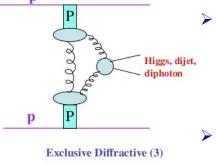
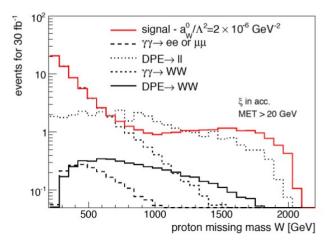

Cuts	Тор	Dibosons	Drell-Yan	W/Z+jet	Diffr.	$a_0^W / \Lambda^2 = 5 \cdot 10^{-6} \text{ GeV}^{-2}$
$\begin{array}{l} \mbox{timing} < 10 \mbox{ ps} \\ p_T^{lep1} > 150 \mbox{ GeV} \\ p_T^{lep2} > 20 \mbox{ GeV} \end{array}$	5198	601	20093	1820	190	282
M(11)>300 GeV	1650	176	2512	7.7	176	248
nTracks ≤ 3	2.8	2.1	78	0	51	71
$\Delta \phi < 3.1$	2.5	1.7	29	0	2.5	56
$m_X > 800 \text{ GeV}$	0.6	0.4	7.3	0	1.1	50
$p_T^{lep1} > 300 \text{ GeV}$	0	0.2	0	0	0.2	35

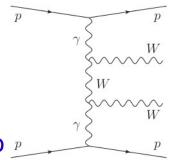
Table 9.5. Number of expected signal and background events for 300 fb^{-1} at pile-up $\mu = 46$. A time resolution of 10 ps has been assumed for background rejection. The diffractive background comprises production of QED diboson, QED dilepton, diffractive WW, double pomeron exchange WW.

Diffractive physics with AFP

Central Exclusive production

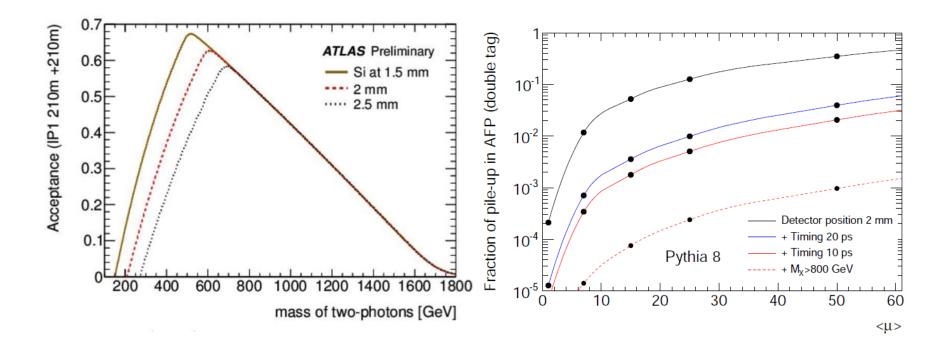


Higgs


Good mass resolution from p energy loss (~2-3%) Tests J^{CP} & improve b-Higgs coupling measurement Di-jets

Test QCD calculations

Triple and quartic anomalous gauge boson couplings



 Exclusive production of WW via photon exchange (σ_{ww→ww} well kno p

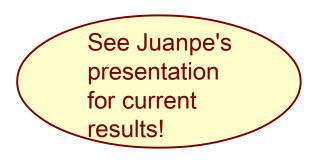
- Diffractive mass computed from p energy loss
 Large mass tails sensitive to anomalous couplings
- Improvement of LEP sensitivity by more than 4 orders of magnitude with 30-200 fb⁻¹

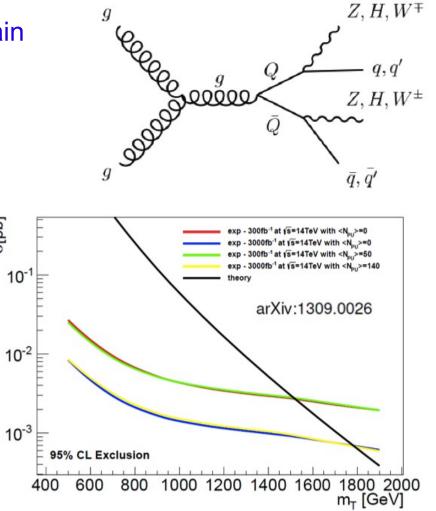
Very good mass resolution (few %)

The stability of the Higgs mass

$$M_{H}^{2} = M_{bare}^{2} + \begin{pmatrix} H \\ H \end{pmatrix} + \begin{pmatrix} t \\ H \end{pmatrix} + \begin{pmatrix} t \\ H \end{pmatrix} + \begin{pmatrix} H \\ H \end{pmatrix} \end{pmatrix} + \begin{pmatrix} H \\ H \end{pmatrix} +$$

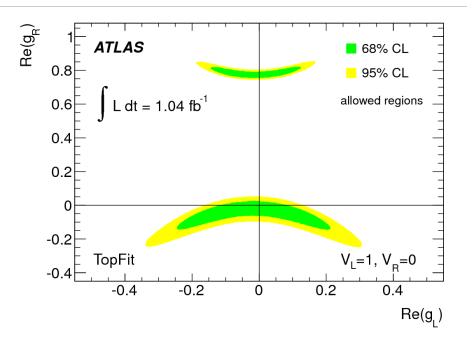
Given the observed mass of the Higgs boson, the stop mass should not be much larger than 1-1.5 TeV Accessible at the LHC?

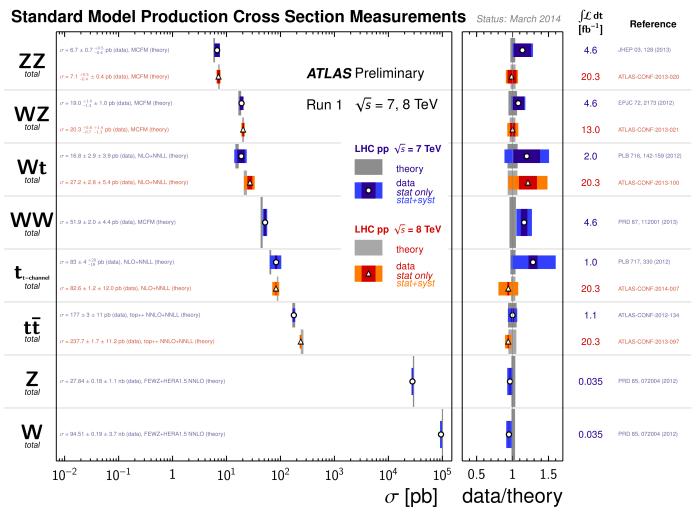



Vector-like quarks

 Vector-like quarks appear in certain models to cancel Higgs mass divergencies

Little Higgs, extra-dimensions


Left-handed and right-handed components transform in the same way under SU(2)


თ[pb]

Standard Model Physics Measurements

P. Conde Muíño

Standard Model Production Cross Section Measurements Status: March 2014 σ [pb] 10^{4} njet ≥ 0 Run 1 $\sqrt{s} = 7, 8 \text{ TeV}$ **ATLAS** Preliminary 35 pb⁻¹ 10³ njet ≥ 1 njet ≥ 0 36 pb-20.3 fb 35 pb⁻¹ njet ≥ 2 20.3 fb⁻¹ Ó 10² fh⁻¹ Ο Δ 36 pb⁻ njet ≥ 95% CL 4.6 fb-20.3 fb⁻¹ 1.0 fb⁻¹ upper limit njet \geq 3 4.6 fb⁻¹ 13.0 fb⁻¹ 4.9 fb⁻¹ Λ 0 0 0.7 fb-36 pb⁻ Ó 4.6 fb⁻¹ 20.3 fb⁻¹ 10^{1} 4.6 fb⁻¹ 2.0 fb⁻¹ njet ≥ 4 0 4.6 fb⁻¹ njet \geq 3 0 36 pb⁻¹ 4.6 fb⁻¹ 0 95% CL 1 4.6 fb⁻¹ 0 upper limit njet ≥ 4 1.0 fb⁻¹ 0 4.6 fb⁻¹ 4.7 fb $4.6 \, \text{fb}^{-1}$ njet ≥ 5 0 10^{-1} 20.3 fb⁻¹ 4.6 fb⁻¹ Δ njet ≥ 6 **LHC pp** \sqrt{s} = 7 TeV **LHC pp** \sqrt{s} = 8 TeV 0 4.6 fb⁻¹ 10^{-2} theory theory njet ≥ 7 0 data data Δ 4.6 fb⁻¹ 10^{-3} tīγ Wγ Zγ Zjjewk t_{s-channel} tτΖ W Ζ tĪ WW $\gamma\gamma$ Wt WΖ ΖZ $\mathbf{t}_{\text{t-channel}}$ fiducial fiducial total total fiducial total total total fiducial fiducial fiducial total total total fiducial njet=0 njet=0

P. Conde Muíño