

Top quark related physics

Federico Nguyen on behalf of the CMS@LIP-Lisboa Group

March 21st, 2014

 \checkmark

An outline

- Particle reconstruction of interest for top quark physics
- $\checkmark \quad \sigma(pp \rightarrow t\bar{t} \rightarrow l \tau_h) \text{ measurement and search for } H^{\scriptscriptstyle +} \text{ in top decays}$
- ✓ Measurement of $B_{t\to Wb}/B_{t\to Wq}$ and $|V_{tb}|$ determination

✓ Summary

Why top quark activities after H(125) discovery?

- \checkmark the heaviest elementary particle (m_{top} ~ 173 GeV/c², such as the ⁷⁴W)
- \checkmark Yukawa top-Higgs coupling, $\, {
 m y_t} = \sqrt{2}\, {
 m m_t}/\langle \phi^0
 angle \simeq 1$
- \checkmark only quark with properties fully predictable in Perturbation Theory: $\tau_{\rm top}\sim 5\times 10^{-25}\,{\rm s}<\hbar/\Lambda_{\rm QCD}\sim 2\times 10^{-24}\,{\rm s}$

- a) Precision measurements of SM properties (*e.g.* cross sections, m_{top})
- b) Test deviations from SM in many observables
- c) Most relevant background process to New Physics searches

Selection of top quark events

Trigger:

- single or double (isolated) leptons

Leptons:

- $e/\mu/\tau_h$, p_T > 20-30 GeV/c
- identification/reconstruction
- tracker/calorimeter isolation

Federico Nguyen Jornadas 2014

<u>Jets</u>:

- at least 2 jets, $p_T > 30 \text{ GeV}$
- anti-kT algorithm, with cone 0.5
- b-tagging

Missing Transverse Energy:

- typically E_T > 30-40 GeV

Reconstruction of b jets

b-tagging: crucial for accurate searches & property measurements in <u>top</u> quark decays

Input observables:

- impact parameter, secondary vertices
- (b-hadron lifetime ~ 1.6 ps)
- transverse momentum relative to the jet axis
- (b-hadron mass ~ 4.8 GeV/c²)
- lepton within the jet (semileptonic decay)

- \checkmark eff. directly measured on $t\overline{t}$ data events
- \checkmark isolated leptons guarantee high purity
- \checkmark methods based on consistency fits,

observed vs. expected \rightarrow syst. from th. shape

Reconstruction of τ_h

JINST 7 (2012) P01001, arXiv:1401.5041

- \checkmark low p_T "strips" in the ECAL

Federico Nguyen

Jornadas 2014

- ✓ charged hadrons
- ✓ decay modes reconstruction

Branching ratios:

- $-65\% \tau^{\pm} \rightarrow \tau_{had}^{\pm} v_{\tau}$
 - 75%, $\tau^{\pm} \rightarrow 1 \pi^{\pm} + [\pi^{0}(s)] + v_{\tau} (1 \text{ prong})$
- 23% , τ[±]→3π[±] + [π⁰('s)] + ν_τ (3 prongs) – 35% τ[±]→I[±]ν₁ν₂

τ_h efficiency and fake rate

JINST 7 (2012) P01001, arXiv:1401.5041

 \checkmark fake jet $\rightarrow\tau$ rate measured both in QCD multijet and W($\rightarrow\mu\nu)$ +jets events

 \checkmark different parton compositions: analyses must account for both \rightarrow systematics

- Efficiency computed using Tag and Probe technique, using Z->ττ->μτ events
- Fit mass distribution for passing and failing TauID probes.

Measurement of $\sigma(pp \rightarrow t\bar{t} \rightarrow l \tau_h)$

PRD85 (2012) 112007

- \checkmark 1 isolated lepton (e/µ) + 1 OS τ_h with p_T > 20 GeV
- ✓ MET > 30 (45) GeV + at least 2 jets (at least 1 btag)
- \checkmark W+jets, $t\bar{t}$ \rightarrow lep+jets are the dominant background with jet \rightarrow τ_{h} fake

 \checkmark the knowledge of this rate is the main measurement uncertainty = 10.8%

Search for the H⁺ boson

JHEP 1207 (2012) 143, CMS PAS HIG-12-052

Decays of the charged Higgs boson:

- ► light H⁺ (m_{H⁺} < m_{top}) decays primarily to $\tau^+\nu_{\tau}$
- heavy H⁺ (m_{H+} > m_{top}) decays primarily to $t\overline{b}$ and $\tau^+\nu_{\tau}$

H+ search strategy

✓ lepton+ τ_h and muon+electron final states (e.g. $e + \tau \rightarrow \mu$) are studied ✓ improved strategy in $\mu + \tau_h$ exploiting τ features in hadronic products ✓ dominant systematics due to tt background events

$$\tau^+ \leftarrow \mathrm{W}^+ \to \nu_{\tau}$$

 $\bar{\nu}_{\tau} \leftarrow \tau^+ \to \mathrm{hadrons}$

the leading track (from τ) p_T spectrum is studied to infer a charged Higgs signal

Federico Nguyen Jornadas 2014

H+ search limits

Measurement of $B_{t \rightarrow Wb}/B_{t \rightarrow Wq}$

CMS PAS TOP-12-035

• An indirect $|V_{tb}|$ measurement and a search for the 4th generation fermions

• Analysis performed in (2,3,4) jets × (3) dilepton flavour categories

Data driven inputs

CMS PAS TOP-12-035

- jet-top assignment probability from data
- b-tagging and mistag efficiencies from data
- Measured signal and background normalization from data
- Systematic uncertainties as nuisance parameters

Jornadas 2014

Results

CMS PAS TOP-12-035

14

Summary

- ✓ top (tau) is the heaviest elementary particle (lepton) →
 most sensitive particles to eventual BSM states
- deep understanding of the CMS detector and improved analysis
 algorithms allow for accurate studies in the sector of top couplings
- ✓ with the tools developed for the $\sigma(pp \rightarrow t\bar{t} \rightarrow l \tau_h)$ measurement: stringent limits have been put on the MSSM parameters space in the search for the H⁺ in top decays
- ✓ world's most precise measurement of the b-quark content in top decays has been performed, assuming 3 fermion generations → the best CKM $|V_{tb}|$ determination

Spare Slides

The CMS detector

17

CMS in action: L1 trigger system

✓ goal: must keep high & redundant efficiency for interesting signals (leptons, MET, high p_{T} jets) against QCD processes

 \checkmark pileup rates ~ 2× the design expectations: improved cuts already at L1

18

Reconstruction of b jets

JINST 8 (2013) P04013, CMS PAS BTV-13-001

JP, <u>Jet Probability</u>:

likelihood evaluated per jet with associated tracks, those with IP are given larger weight

CSV, <u>Combined Secondary Vertex</u>:

secondary vertices and track-based lifetime combined into a discriminator

The Particle Flow Algorithm

Calorimeter jet:

- $E = E_{HCAL} + E_{ECAL}$
- σ(E) ~ calo resolution
 to hadron energy:
 120 % / √E
- direction biased (B = 3.8 T)

VS.

Particle flow jet:

- 65% charged hadrons
 - σ(pT)/pT ~ 1%
 - direction measured at vertex
- 25% photons
 - σ(E)/E ~ 1% / VE
 - good direction resolution
- 10% neutral hadrons
 - σ(E)/E ~ 120 % / VE

