Highlights from B Physics & Heavy Ions

N. Leonardo, LIP

Jornadas LIP 2014 Pavilhão do Conhecimento, Lisboa

heavy flavor

- find evidence and characterize new physics, through precision measurements and rare decay searches
 - complementary to direct searches, gain access to higher mass scales
- hadron production and properties
 - measure CP violation and FCNC
 - search for expected & exotic new states
- explore QCD matter under extreme conditions of temperature and density
 - hard probes of the quark gluon plasma

[physics goals]

Jornadas LIP'2014 21/3/14 2

CIS [precision (dí)muon spectrometer]

- excellent momentum resolution down to low pT (wrt ATLAS)
- large luminosities and momentum reach (wrt LHCb, ALICE)
- flexible trigger system -- explore wide spectrum of mass/energy

Upsilons: then... & now

Upsilon production [in pp]

PRD 112004 (2010) **PLB** 727 (2013) 101

- first Y(nS) measurements at LHC
- extended in precision and pT reach
- differential production cross sections and polarizations

nuno@cern.ch

Jornadas LIP'2014 21/3/14 7

Upsilon suppression [in PbPb]

PRL 107(2011)052302, Synopsis in Physics **PRL** 109(2012)222301, Viewpoint in Physics

- first (quantitative) measurements of the Y(nS) states in HI collisions
- unprecedented resolutions, allowing the separate the three states
- measure double ratios
 - nS vs IS & PbPb vs pp
 - experimentally and theoretically robust
- excited states observed (>5σ) to be more suppressed than ground state

quarkonium sequential suppression

Jornadas LIP' 2005

B_s Mixing at CDF

Nuno Leonardo Massachusetts Institute of Technology

Amplitude method

Jornadas LIP December 2005

JORNADAS DO LIP - DECEMBE

CDF, 355pb⁻¹ Very first Tevatron mixing results Sensitivity still limited

$P \sim 1 \pm A D \cos(\Delta m_s t)$

Probed Δm_s excluded if $A + 1.645 \sigma_A < 1$ (95%CL)

95% CL LIMIT

8.6 PS-1

SENSITIVITY

13.0 PS-1

N. Leonardo, MIT

B: Mixing at CDF

Tevatron's Run II

B_s mixing & (B)SM

- precise measurement of B_s mixing frequency by CDF resulted in strict constraints to the Unitarity Triangle, CKM elements, and New Physics
- Tevatron's measurements of the B_s mixing phase improved by LHC
- within available precision: consistent with SM + strict constraints on NP

<u>nuno@cern.ch</u>

$B_s \rightarrow \mu \mu$: the 'golden' rare decay

- in the Standard Model B_{d/s}→µµ
 decays are highly suppressed
 - helicity suppressed, by factor of $(m_{\mu}/m_B)^2$

- FCNC, forbidden at tree level, can only proceed through higher-order loop diagrams
- Cabibbo suppressed $|V_{ts(td)}|^2$

- Possible new particles in the loops!
 - may enhance or suppress the decay rates

Standard Model

Observation of $B_s \rightarrow \mu \mu$

Observation of $B_s \rightarrow \mu \mu$

Purdue Universit

Nove

Active searches for 3 decades at many accelerators & experiments

... the 3 decade quest for $Bs \rightarrow \mu \mu !$

improvements

- >100x over last decade
- >10x in past year alone
- SM sensitivity within reach at LHC Run I
 - for B_s (not yet B_d)

$B_s \rightarrow \mu \mu$: this past Summer's LHC observation

- CMS observes the Bs decay at 4.3σ level •
- CMS + \downarrow HCb(4.0 σ): >5 σ significance •
- B_s result compatible with SM expectation
 - strong constraints on NP

 B_d decay: focus of next LHC run (3 σ hint?) nuno@cern.ch

B physics & heavy ions

Tornadas LIP'2014 21/3/14 16

 $B(B_s^0 \to \mu^+ \mu^-) [10^{-9}]$

Summary

600

400

200

CMS PbPb √s_{NN} = 2.76 TeV

data

total PbPb fit

background pp shape

(R_{AA} scaled)

13

peaking bkc

5.8 5.9 m.... (GeV)

Cent. 0-100%, |y| < 2.4

L_{...} = 150 µb⁻¹ p^µ₋ > 4 GeV/c

10

CMS - L = 5 fb⁻¹ vs = 7 TeV, L = 20 fb⁻¹ vs = 8 TeV

D_c

Mass(u*u*) [GeV/c2]

11

- very successful heavy flavor program based on LHC Run I pp / pPb / PbPb data
 - 1008 dimuon signals successfully explored at CMS!
- focused on the two most emblematic results from B physics and heavy ions
 - observation of sequential quarkonium suppression in PbPb collisions
 - observation of the rare B_s decay
- there are many more!
 - + 2012 and 2013 datasets still being analyzed
- perspectives for next runs
- S/(S+B) Weighted Events / (0.04 GeV) explore more rare decays (B_d!) and new states
 - first measurements of exclusive B decays, and the top quark, in heavy ion collisions

nuno@cern.ch

5.1 5.2 5.3 5.4 5.5 5.6

perspectives: heavy ions

- continue re-discovery of the Standard Model... in HI collisions!
- exclusive bottom (and charm) exclusive decays, eg $B_{ucds} \rightarrow J/\psi K/\pi$
- disentangle quarkonia feeddown (eg $X_{b,c}$) and attempt polarization

(access the earliest timescales in the collisions)

perspectives: B physics

- Bd decay: 2-3σ hint? focus of next LHC run
- larger datasets will allow high precision measurements of B_s and B_d
 - including ratio, effective lifetimes, and additional variables sensitive to NP
 - expect 11.2σ sign. for B_s with 100 fb⁻¹
 - expect >5 σ sign. for B_d with 3000 fb⁻¹
- detector upgrades for HL-HLT
 - yield improvement in p⊤ resolution by factor of 1.5 in the barrel important to help disentangling peaking backgrounds and signals
 <u>nuno@cern.ch</u>
 B physics & heavy ions
 Jornadas LIP'2014
 21/3/14
 20

$B_s \rightarrow \mu \mu$ (analysis overview)

- full LHC Run I datasets
 - 5fb⁻¹ (\sqrt{s} =7TeV, 2011) and 20fb⁻¹ (\sqrt{s} =8TeV, 2012)
- blind signal region (until selection is fixed)
- multivariate candidate selection
- unbinned likelihood fit to dimuon mass
 - fit simultaneously the $B_s \rightarrow \mu \mu$ and $B_d \rightarrow \mu \mu$
- normalization sample: $B^+ \rightarrow J/\psi K^+$
 - avoid uncertainties from the b production cross section, and luminosity
 - (nearly) identical selection to reduce systematic uncertainties (efficiencies)

Region definitions	Invariant mass (GeV)
overall window	$4.90 < m_{\mu 1 \mu 2} < 5.90$
blinding window	5.20 < m _{µ1µ2} < 5.45
$B^0 \to \mu^{\star} \mu^{-} \text{ window }$	$5.20 < m_{\mu 1 \mu 2} < 5.30$
$\boldsymbol{B}_s \to \boldsymbol{\mu}^{\scriptscriptstyle +} \boldsymbol{\mu}^{\scriptscriptstyle -} \text{ window }$	$5.30 < m_{\mu 1 \mu 2} < 5.45$

Data split in two categories: - Barrel: 2 μ in barrel $|\eta| < 1.4$ \blacksquare better sensitivity, $\sigma_M \sim 40 MeV$ - Endcap: $\geq I \mu$ in endcap $|\eta| > 1.4$

rare backgrounds

• expected no. of events in each channel normalized to B^{\pm} in data

$$N(X) = \frac{Br(Y \to X)}{Br(B^{\pm} \to J/\psi K^{\pm})} \frac{f_Y}{f_u} \frac{\varepsilon_{tot}(X)}{\varepsilon_{tot}(B^{\pm})} N_{obs}(B^{\pm})$$

weighted with muon misidentification rates and ε_{trig}

R_{AA} & centrality

- pp data employed as baseline for heavy-ion measurements
- nuclear modification factor, RAA

$$R_{AA} = \frac{\text{Yield (PbPb)}}{\text{Yield (pp) } \times \langle N_{coll} \rangle} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{MB}} \frac{N_{PbPb}(Q\overline{Q})}{N_{pp}(Q\overline{Q})} \cdot \frac{\varepsilon_{pp}}{\varepsilon_{PbPb}} \qquad > I \text{ enhancement} \\= I \text{ no medium effect} \\< I \text{ suppression} \end{cases}$$

- centrality dependence
 - impact parameter, b, of the collision
 - central collisions (small b): hot, large N_{part} (number of participating nucleons)
 - peripheral collisions (large b): cold, large spectators (fly away undisturbed)

suppression vs centrality

• nuclear modification factor

- $Y&\psi$ states are suppressed
- suppression increases with the centrality of ion-ion collision
- observed suppression pattern
 - $\Upsilon(IS) < J/\psi < \Upsilon(2S) < \Upsilon(3S)$
- consistent with QGP formation

JHEP 1205 (2012) 063

the Compact Solenoid détector

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

Lead tungstate E/M Calorimeter (ECAL)

Hadron

ison return yoke interspersed

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

Solenoid