

MARTA

Muon Auger RPC for the Tank Array

Raul Sarmento for the Auger@LIP group

The Pierre Auger Observatory - Beyond 2015

Measurements up to 2023 with upgraded detectors!

• Elucidate the origin of the flux suppression and the mass composition at the highest energies

• Sensitivity to 10% proton flux contribution

 Understand hadronic interactions above 60
TeV and constrain new physics phenomena

The importance of determining the muonic shower component

New <u>muonic variables are needed</u> for disentangling mass composition scenarios from hadronic models!

The concept of MARTA

Add a second independent µ sensitive detector with good space and time resolution

- independent and precise measurements of N_{μ} (mean and RMS) and E
- Muon Transversal (LDF) and Longitudinal (X^{μ}_{max}) profiles
- Control of Systematics (cross-calibrations)

The concept of MARTA

Absorption of the electromagnetic component in the tank, assessing the muonic component by digital counting of hits in the RPCs

Baseline configuration

800 stations covering an area of around 2800 km²:

•71 stations with 750 m spacing (27 km^2)

•380 stations with 1500 m spacing (750 km²)

•350 stations with 2600 m spacing (2000 km^2)

Precast + 4 RPC modules below each tank 6

Segmentation

256 segments per MARTA station!

Segmentation allows for:

- digital muon counting (with high time resolution)
- definition of fiducial areas (with reduced e.m bkg)
- Definition of control regions (with increased e.m. bkg)
- Powerful methods of calibration and cross-calibration

The amount of material crossed can be accurately computed for each pad and each shower geometry

Expected performance

Station level: digitally counting the number of muons For 500m < r < 2000m : ~20% e.m signal (as foreseen)

Resolutions between 10% and 25%

MARTA ultimate saturation: analogic mode for first 100 ns

Saturation with analogic mode for $E = 10^{19.5} \text{ eV} \theta = 40^{\circ}$, $R_{sat} = 100 - 150 \text{ m}$

Calibration, cross-calibration and assessing the EAS muon low energy spectrum Use a MPD like algorithm to reco

Particles per pad per min

It is possible to follow the number of hits in each pad (ϵ and flux variations) at 1% level every 30 m Use a MPD like algorithm to reconstruct shower muon trajectories in the tank thanks to a fine segmentation

$\bm{X}^{\mu}{}_{\bm{max}}$

Combined MARTA and Tank Lateral Distribution Functions (LDFs)

Event by event (β fixed)

Preliminary resolutions of the order 15% both for $S_{\mu 1000}$ and $S_{em 1000}$

MARTA LDFs

Normalization ρ_{1000} and shape β parameters of the muon LDFs: additional for assessing the beam composition!

MARTA @ Malargue

RPC telescope in test tank

Events taken asking coincidence of scintillators:

MARTA @ Malargue

Precast + RPC modules installed on the field

Next steps:

- Continue with data taking and analysis
- Install 2 more MARTA stations to measure muon LDFs
- Move to integrated electronics

Thanks for your attention!

Backup slides

• Increase the sensitivity to primary photons!

400 р 350 He Ν 300 Fe Probability density 500 Probability density 150 Probability density EPOS-LHC 100 50 7.7 7.8 $\log_{10}(N_{\rm max}^{\mu})$ 7.5 7.6 7.9 8.0 700

Xn

600