NEWS from

Sofia Andringa, for the SNO+ LIP group

Jornadas do LIP 2014

SNO+ and SNOLAB Other v/DM

780 tons of liquid scintillator viewed by 9000 PMTs (55% cover.)

for low energy v physics:

- $-0\nu\beta\beta$
- Oscillations
- SuperNovae
- **Geo** v
- Solar v

Fiber calibration system

92 (+spares) mounting points:
36 installed from cavity floor, ¹²²
others with boating and climbing

Commissioning Runs 2014

- 3 short Air Runs in 2013/2014:
 - characterize LED/Fiber system
 - first paper of SNO+ hardware
 - first test of PMT calibrations

Long Water Run in 2014:

- measure all PMT & optical properties
- cross-check with SNO last data
- test continuous running @ 10 Hz

SNO+ last pieces...

Umbilical Retrieval Mechanism for Calibration Sources

- to insert / move radioactive sources inside the scintillator
- being made at LIP workshops; needed at SNOLAB in 2015
- general design approval from SNO+ & SNOLAB experts
- stringent requirements; material radio-purity tests on-going

Scintillator Processing Systems also being done at SNOLAB

DAQ & Data Quality

DAQ based on ORCA (as in Majorana/Katrin)

- monitoring / slow control
- operator / level experts

Low level DQ tests

- check hardware vs run-log info
- data recording & building
- monitoring info needing detector action
- & logging info set bit mask on run quality

Gersende Prior

Nasci em Paris e estudei física na Suiça, no EPFL. Durante a minha tese de diploma, trabalhei na experiência NOMAD no CERN. Descobri assim o mundo dos neutrinos. Isso convenceu-me a fazer o doutoramento na experiência HARP, que mediu secções eficazes hadrónicas

importantes para as experiências dos neutrinos. Ajudei a construir a TPC, a renovar detetores de feixe e a instalar o DAQ.

Quando SNO publicou o artigo que contribuiu para provar as oscilações dos neutrinos, sonhei visitar um dia essa experiência. Aconteceu em 2005, quando fui para Berkeley para trabalhar em SNO. Era a ultima fase da experiência, em que uma rede de contadores proporcionais foi construída para melhorar as medidas. Trabalhei na calibração dos contadores e colaborei no R&D de um detetor de Germânio para a experiência MAJORANA.

Em 2009, voltei para o CERN e trabalhei no estudo do design de uma fábrica de neutrinos. Nos departamentos de aceleradores e engenharia, aprendi sobre a ótica dos feixes (radiofrequência, ímanes) e participei em simulações da performance da captura do feixe.

Foi com grande prazer que, no início deste ano, integrei o grupo do José

Maneira para trabalhar na experiência SNO+, a sucessora de SNO. Apesar de esta mudança implicar que a nossa família tem agora que se distribuir entre França e Portugal, como o meu filho de dois anos diz, há coisas que vêm aos pares, como "pão beurre".

(Boletim do LIP – nb 7, Março 2014)

Optical Calibration

Group coordination at LIP (expertise since SNO)

Based on uniform Laser Ball with continuous monitoring by LED / Fiber

Light absorption, re-emission and scattering in Scintillator + Water (+ AV) and PMT angular response

Processing, reconstruction and selection of large sets of calibration data:

- central LaserBall @ 6 wavelengths
- 30 x 6 positions & wavelengths
- Each LED / Fiber (1Hz + calib runs)

Large MC production in Pt GRID

0νββ

lower energy resolution than other ββ detectors
BUT very high quantity of the isotope
dissolved in low background medium
NEED not to degrade energy resolution
tested ¹⁵⁰Nd (high Q) and ¹³⁰Te (high NA)
(¹³⁶Xe tested and used in KamLAND-Zen)

$$\begin{split} \mathsf{Q}(2\mathsf{v}) &\sim \Delta \mathsf{M} - \mathsf{E}_{\mathsf{e}} = 2\mathsf{M}_{\mathsf{v}} = 2 \ \Sigma \ \mathsf{U}_{\mathsf{e}\mathsf{i}} \ \mathsf{m}_{\mathsf{i}} \\ \Gamma(0\mathsf{v}) \ \alpha \ |\mathsf{M}_{\beta\beta}|^2 = | \ \Sigma \ (\mathsf{U}_{\mathsf{e}\mathsf{i}})^2 \ \mathsf{m}_{\mathsf{i}} \ |^2 \end{split}$$

	2vββ [years] measured by NEMO-3:	0vββ [years] calculated by IBM-2:
Nd	9 x 10 ¹⁸ (g.s.) 1 x 10 ²⁰ (e.s.)	3 x 10 ²³ / (Μ _{ββ} / 1 eV) ²
Те	7 x 10 ²⁰ (g.s.)	$4 imes 10^{23}$ / $(M_{etaeta}/1 ext{ eV})^2$

$0\nu\beta\beta$ with ¹³⁰ Te

high natural abundance, expected high $0\nu\beta\beta/2\nu\beta\beta$ can be loaded in scintillator (0.3% ok, tests up to 3%)

Expected sensitivity in 5 years ("simple" counting experiment): $T_{1/2} > 7.3 \times 10^{25}$ yr (90%CL) $T_{1/2} = 2.4 \times 10^{25}$ yr (5 σ)

Te @ 0.3% (up to 3%?)

Backgrounds & α/β tags

PMT/H₂O/AV backgrounds reduced by Fiducial cuts

Loaded scintillator backgrounds reduced by 2 stage purification (can be tested in-situ with loading)

On-peak ²¹⁴Bi and ²⁰⁸Tl

reduced by α - β coincidence tagging (including pulse-shape discrimination)

Irreducible 2vββ

energy resolution (& pile-up rejection)

Solar ⁸B neutrinos

irreducible but known and visible

Anti-neutrinos $\overline{v_e} + p \rightarrow e^+ + n$

Group coordination at LIP (new 1-year "exploratory project")

Positron annihilation gives anti-neutrino energy and interaction point Delayed neutron capture gives clear tagging and "smeared" direction

NU/Me Almost background free 90 Geo (not to scale) & very high efficiency 70 Reactors with Contributions from: 60F oscillations 50 - distant nuclear reactors 40F - 3 Canadian reactors 30F - geo-neutrinos from 20 E U/Th decay chains 10 inside crust & mantle 2 3 4 5 6 7 8 9 10 Nu E (MeV)

Mainly energy, but reactor variations and directions to be explored

Neutrino oscillations

In 2012 last mixing angle was measured with close-by reactors, from now on 3v matrix must be used in analysis of all experiments

SNO+ will see 12 oscillations

Solar v for θ_{12} and θ_{13} and Only LBL Reactor v for ΔM_{12}^2 ("directly" from L/E pattern)

Same precision as KamLAND

Geo-neutrinos

New field, measurements with impact on geo-physics! Only two experiments up to now (KL – Japan, BX – Italy) In SNO+, less background, larger area, well known crust fraction

We will try to use directionality (e⁺ / n vector) to improve selection

- will be tested for SNO+ and future improved detectors with:
 - enhanced neutron capture
 - enhanced position resolution

Summary and outlook

SNO+ almost ready for (water) data in the end of 2014

- new PMT calibration system installation being finalized
- new URM being built at LIP workshops in Coimbra

LIP's group has grown in people and tasks

- DAQ & DQ
- Optical and PMT Calibration
- External Backgrounds
- α/β discrimination
- Reactor anti-neutrino Oscillations
- Geo-anti-neutrino Physics

Scintillator data now expected in 2015

- $0\nu\beta\beta$ in ¹³⁰Te (0.3% loading, can be later increased to 3%)
- Anti-neutrinos, SuperNovae, Solar Neutrinos, ...

Solar v

- B-8, measured at high energy total rate measured by SNO!
 CC / NC fixes oscillation
- pep, measured @20%, model prediction, @1%
- Be-7, 1st line @5%, model prediction, @7%, ratio of 2 lines fixed
- CNO, upper limits only, direct test of metalicity
- pp, only radio-chemical exps.
 oscillation fit + luminosity
- hep, unmeasured but small

SNO+ last pieces...

Umbilical Retrieval Mechanism for Calibration Sources

- to insert / move radioactive sources inside the scintillator
- being made at LIP workshops; needed at SNOLAB in 2015
- general design approval from SNO+ & SNOLAB experts
- stringent requirements; material radio-purity tests on-going

MOTOR BOX & ROPE MECHANISM

Scintillator Processing Systems also being done at SNOLAB

