

Detector R&D in Support of the European Strategy for Particle Physics

P. Allport (Birmingham) LIP Lisboa 20/1/2022

IDEA

ill factor & performance improvements

CLD

http://cds.cern.ch/record/2784893/files/

- ECFA Detector R&D Roadmap
 - Motivation
 - Process
 - Key Observations
 - Recommendations
- FCC-specific R&D
 - FCC-ee/eh/hh: Experiment Concepts
 - Vertex
 - Tracking
 - Calorimetry
 - PID, Photodetectors and Microelectronics
 - Muons, Magnets and Integration
- Conclusions and Observations

The input to the process is the European Particle Physics Strategy Update as adopted by CERN Council on 19 June 2020.

"Main report: "Recent initiatives with a view towards strategic R&D on detectors are being taken by CERN's EP department and by the ECFA detector R&D panel, supported by EU-funded programmes such as AIDA and ATTRACT. Coordination of R&D activities is critical to maximise the scientific outcomes of these activities and to make the most efficient use of resources; as such, there is a clear need to strengthen existing R&D collaborative structures, and to create new ones, to address future experimental challenges of the field beyond the HL-LHC. <u>Organised by ECFA, a roadmap should be developed by the community to balance the detector R&D efforts</u> in Europe, taking into account progress with emerging technologies in adjacent fields."

Deliberation document: "Detector R&D programmes and associated infrastructures should be supported at CERN, national institutes, laboratories and universities. Synergies between the needs of different scientific fields and industry should be identified and exploited to boost efficiency in the development process and increase opportunities for more technology transfer benefiting society at large. <u>Collaborative platforms and consortia must be adequately supported to provide coherence in these R&D activities</u>. <u>The community should define a global detector R&D roadmap that should be used to support proposals at the European and national levels</u>."

Extracted from the documents of 2020 EPPSU, https://europeanstrategyupdate.web.cern.ch/

For previous presentations see Plenary ECFA: Jorgen D'Hondt (<u>https://indico.cern.ch/event/933318/</u>), Susanne Kuehn (<u>https://indico.cern.ch/event/966397/</u>) and Phil Allport (<u>https://indico.desy.de/event/28202/</u>)

More roadmap process details at: https://indico.cern.ch/e/ECFADetectorRDRoadmap

*community feedback via RECFA delegates and National Contacts

For Roadmap process web pages see <u>https://indico.cern.ch/e/ECFADetectorRDRoadmap</u> and introduction in the published document at <u>http://cds.cern.ch/record/2784893/files/</u>.

"Organised by ECFA, a roadmap should be developed by the community to balance the detector R&D efforts in Europe, taking into account progress with emerging technologies in adjacent fields" *

"The community should define a global detector R&D roadmap that should be used to support proposals at the European and national levels" *

ECFA Detector R&D Roadmap Panel web pages at:

https://indico.cern.ch/e/ECFADetectorRDRoadmap

* 2020 European Particle Physics Strategy Update https://europeanstrategyupdate.web.cern.ch/

Broad Roadmap Topic Areas

- Focus on the technical aspects of detector R&D requirements given the EPPSU deliberation document listed "High-priority future initiatives" and "Other essential scientific activities for particle physics" as input and organise material by Task Force.
- Task Forces start from the future science programme to identify main detector technology challenges to be met (both mandatory and highly desirable to optimise physics returns) and estimate the period over which the required detector R&D programmes may be expected to extend.
- Within each Task Force the aim is to propose a time ordered detector R&D programme in terms of capabilities not currently achievable.

Grouped targeted facilities/areas emerging from the EPPSU

- Detector requirements for full exploitation of the HL-LHC (R&D still needed for LS3 upgrades and for experiment upgrades beyond then) including studies of flavour physics and quark-gluon plasma (where the latter topic also interfaces with nuclear physics).
- R&D for long baseline neutrino physics detectors (including aspects targeting astro-particle physics measurements) and supporting experiments such as those at the CERN Neutrino Platform.
- Technology developments needed for detectors at e⁺e⁻ Higgs-EW-Top factories in all possible accelerator manifestations including instantaneous luminosities at 91.2GeV of up to 5×10³⁶cm⁻²s⁻¹ and energies up to the TeV range.
- The long-term R&D programme for detectors at a future 100 TeV hadron collider with integrated luminosities targeted up to 30ab⁻¹ and 1000 pile-up for 25ns BCO.
- Specific long-term detector technology R&D requirements of a muon collider operating at energies going up to 10 TeV and with a luminosity of the order of 10³⁵ cm⁻² s⁻¹.

Broad Roadmap Topic Areas

Grouped targeted facilities/areas emerging from the EPPSU

- Detector developments for accelerator-based studies of rare processes, DM candidates and high precision measurements (including strong interaction physics) at both storage rings and fixed target facilities, interfacing also with atomic and nuclear physics.
- R&D for optimal exploitation of dedicated collider experiments studying the partonic structure of the proton and nuclei as well as interface areas with nuclear physics.
- The very broad detector R&D areas for non-accelerator-based experiments, including dark matter searches (including axion searches), reactor neutrino experiments and rare decay processes, also considering neutrino observatories and other interface areas with astro-particle physics.
- Facilities needed for detector evaluation, including test-beams and different types of irradiation sources, along with the advanced instrumentation required for these.
- Infrastructures facilitating detector developments, including technological workshops and laboratories, as well as tools for the development of software and electronics.
- Networking structures in order to ensure collaborative environments, to help in the education and training, for cross-fertilization between different technological communities, and in view of relations with industry.
- Overlaps with neighbouring fields and key specifications required for exploitation in other application areas
- Opportunities for industrial partnership and technical developments needed for potential commercialisation

20/01/2022

ECFA Detector R&D Roadmap Process

Many more details at: <u>https://indico.cern.ch/e/ECFADetectorRDRoadmap</u>, Plenary ECFA presentation (<u>https://indico.cern.ch/event/1085137/</u>) and in published documents (<u>http://cds.cern.ch/record/2784893/files/</u>).

2021 to 30 July 202	1	a
e admap ent s members and mes prin falure monanes	"Coordination of RED activities is critical make the most efficient use of resource containsorative muturess, and is creater to beyond the H4.LHC. Organized by EDM the detector RED efforts in litures, takin failtin. The machinas thatal islentity and patiential is entrance in the patientimes on community sustainap could, for example bases for creating RED patients. This scale activities instruction activities of the patients. These scale activities the activities of comboration termination and comboration activities of the patients.	It to reasoning the coverific numeries of these activities and to rea; as another the covering the second state (BD) reasoning the second state of the second state (BD) reasoning the second state of the second state of the problem state of the second state of the second state reasoning a diversities of the second state of the second state of the second state of the second state of the second state state of the second state of the second state of the second state of the second state of the second state state of the second state of the second state of the second state of the second state of the second state state of the second state of the second state with allow coversets and states and states are set of the second states states and states are set of the second state with allow coverset and states and states are set of the second states states and states are set of the second states with shades.
e documenta	Extract from the 2020 Update of the Eu	ropean Strategy for Particle Physics
-	https://cds.own.ch/wcord/2721370	
tion to the	Starts 34 May 2021, 09:00 Eads 30 Jul 2021, 18:00 Exception During	🖉 👌 bat, Hanner, Managara, rame, d. – L
	A repose	The second se

ECFA Detector R&D Road

20/01/2022

ECFA Detector R&D Roadmap Process

<u>Many thanks</u> to all the authors, the 12 expert Input Session speakers, ECFA National Contacts, respondents to the Task Force surveys, the 121 Symposia presenters, the 1359 Symposia attendees and the 44 APOD TF topic specific contacts.

Task Force convenors, Task Force expert members and Panel members of the ECFA Detector R&D Roadmap Process

Task Force 1 Gaseous Detectors: Anna Colaleo¹, Leszek Ropelewski² (Conveners) Klaus Dehmelt³, Barbara Liberti⁴, Maxim Titov⁵, Joao Veloso⁶ (Expert Members)

Task Force 2 Liquid Detectors: Roxanne Guenette⁷, Jocelyn Monroe⁸ (Conveners) Auke-Pieter Colijn⁹, Antonio Ereditato^{10,11}, Ines Gil Botella¹², Manfred Lindner¹³ (Expert Members)

Task Force 3 Solid State Detectors: Nicolo Cartiglia¹⁴, Giulio Pellegrini¹⁵ (Conveners) Daniela Bortoletto¹⁶, Didier Contardo¹⁷, Ingrid Gregor^{18,19} Gregor Kramberger²⁰, Heinz Pernegger² (Expert Members)

Task Force 4 Particle Identification and Photon Detectors: Neville Harnew¹⁶, Peter Krizan²⁰ (Conveners) Ichiro Adachi²¹, Eugenio Nappi¹ Christian Joram², Christian Schultz-Coulon²² (Expert Members)

Task Force 5 Quantum and Emerging Technologies: Marcel Demarteau²³, Michael Doser² (Conveners) Caterina Braggio²⁴, Andy Geraci²⁵, Peter Graham²⁶, Anna Grasselino²⁷, John March Russell¹⁶, Stafford Withington²⁸ (Expert Members)

Task Force 6 Calorimetry: Roberto Ferrari²⁹, Roman Poeschl³⁰ (Conveners) Martin Aleksa², Dave Barney², Frank Simon³¹, Tommaso Tabarelli de Fatis³² (Expert Members)

Task Force 7 Electronics: Dave Newbold³³, Francois Vasey² (Conveners) Niko Neufeld², Valerio Re²⁹ Christophe de la Taille³⁴, Marc Weber³⁵ (Expert Members)

Task Force 8 Integration: Frank Hartmann³⁵, Werner Riegler² (Conveners) Corrado Gargiulo², Filippo Resnati², Herman Ten Kate³⁶, Bart Verlaat², Marcel Vos³⁷ (Expert Members)

Task Force 9 Training: Johann Collot³⁸, Erika Garutti^{18,39} (Conveners) Richard Brenner⁴⁰, Niels van Bakel⁹ Claire Gwenlan¹⁶, Jeff Wiener², ex-officio Robert Appleby⁴¹ (Expert Members)

Scientific Secretary: Susanne Kuehn²

https://indico.cern.ch/e/ECFADetectorRDRoadmap

20/01/2022

European Detector R&D Planning

The outcomes are summarised in a 250 page main document and an 8 page BIRMINGHAM synopsis for less specialist readers. A key guiding policy has been trying to ensure that: Detector R&D readiness should not be the determining factor in the future of particle physics

http://cds.cern.ch/record/2784893/files/ Contents CONTENTS 5.3.1 Clocks 5.3.2 Spin-based sensors for axions and axion-like-particles 8.3.2.2 Local Cooling / Cooling contacts . Novel materials to achieve ultra-light, high precision mechanical 5.3.3 Superconducting approaches 5.3.3.1 Dark matter searches with 3D microwave cavities structures Table of Content 5.3.4 Optomechanical technologies 5.3.5 Atoms, molecules, ions and atom-interferometric probes 5.3.6 Metamaterials, low-dimensional materials, quantum ma 8.3.3.1 Machine-detector interface (MDI) 8.3.4 Monite ng Environmental Monitoring Introduction 8.3.4.1 Environmental Monitoring 8.3.4.2 Beam and Radiation Monito 5.4 Observations and Prospects References Chapter 5 References Introduction 8.3.5 Calorimetry, Neutrino and Dark Matter Detectors Gaseons Detector 131 8.3.5.1 Calorimetry 8.3.5.2 Neutrino Detectors and Dark Matter Detectors 6 Calorimetry Calorimetry 6.1 Introduction 6.2 Main drivers from the facilities 6.3 Key technologies 6.3.1 Silicon-based calorimeters 6.3.1 Challenges and n 1.1 Introduction . 1.2 Main drivers from the facilities 8.3.6 Robotic Systems, Survey . . 8.4 Observations and Recommendations 1.2.1 Muon systems . 1.2.2 Inner and central tracking with particle identification capability References Chapter 8 . 6.3.1.1 Challenges and requirements for future projects 6.3.1.2 Main R&D Directions Calorimetry Based on Liquified Noble Gases 136 9 Training 1.2.4 Photon detection 6.3.2 Calorin 137 9.1 Rel 1.2.5 Time of Flight System 6.3.2.1 Challenges and requirements for future projects 1.2.6 TPCs for rare event searches 6.3.2.2 Main R&D Directions 1.3 Record endations 6.3.3 Cal try Based on Gaseous Detectors 9.2.1 University programmes dedicated to HEP instr 6.3.3 Calorimetry Based on Gaseous Detectors 6.3.4 RkD needs for Gaseous Calorimeters 6.3.4 Calorimeters with light-based readout 6.3.4.3 State-0-the-art 6.3.4.2 Challenges and requirements for future projects 6.3.4.3 Main RkD directions 1.3.1 Key technologies 9.2.2 Graduate schools, doctoral and post-doctoral programmes dedi cated to HEP instrumentation training . 9.2.3 Contribution of major laboratories . . . 9.2.4 Status of accelerator training in Europe 1.3.2 Common challenges 1.3.3 R&D environment and development tools References Chapter 1 9.3 The future of instrumentation training 6.3.5 Precision timing in calorimetry . 6.3.5.1 Use of timing information for enhanced calorimetric per Liquid Detectors 9.3.1 A coordinated European training programm 9.3.1 A coordinated European trainin 9.3.2 The role of virtual laboratories 9.3.3 The role of major laboratories. 2.1 Introduction 6.3.5.2 R&D Needs 2.2 Main drivers from the facilities 6.3.5 HAD Needs 6.3.5 HAD Needs 6.3.5 I Breadth of challenges for calorimeter readout system 6.3.6.2 Necessary ASIC developments 6.3.6.3 Discrete components for compact calorimeters 6.3.6.4 Connection technologies for large-area solid-state sum 6.3.6.5 Readout integration and the new surve of PFGAs ... 9.3.4 Industry meets academia 2.3 Key technologies . . 2.3.1 Liquid Properties of Noble Liquids 9.4 Recommendations References Chapter 9 2.3.2 Charge Collection in Noble Liquids . 2.3.3 Purification, Cryogenics, Infrastructure and Integration for Noble 10 General Observations and Considerations References Observations 2.3.4 Light Collection in Noble and Other Liquids 6.4 Observations . . 6.5 Recommendations 11 Conclusions 2.3.5 Liquid Scintillator and Water Detectors References Chapter 6 . 150 2.4 Observations Appendices A Glossary 2.4.1 Neutrino Oscillation and Astro-particle Neutrino Detectors Electronics and Data Processing 153 2.5 Recommendations C Acknowledge 53 CONTENTS CONTENTS 3 Solid State Detectors 7.2.2 The inheritance from HL-LHC 3.1 Introduction . 7.2.3 Industrial developments . 154 3.2 Main drivers from the facilities 7.2.4 Categorising New Developments 156 7.2.4 Categoriang New Developments Technical Findings 7.3.1 Front-end ASICs 7.3.1.1 State-of-the-art 7.3.1.2 Technology choice and ASICs evolution 3.3 Key technologies 3.3.1 CMOS sensors: MAPS and passive CMOS 156 3.3.2 Sensors for 4D-tracking . . 3.3.3 Silicon sensors for extreme fluences environments 7.3.1.3 Identified R&D themes 7.3.2 Links, Powering and Interconne 7.3.2.1 State-of-the-art 7.3.2.2 Future challenges . . 3.3.6 Status and evolution of the simulation tools 7.3.2.3 Industry and other fields 3.4.1 Testing infrastructures . . 7.3.2.4 Identified R&D themes 160 3.4.2 Industrialisation 7.3.3 Back-end Systems 7.3.3.1 State-of-the-art . . 7.3.3.2 Future challenges 3.4.3 Related fields 3.5 Recommendations 3.5.1 Detector R&D Themes 7.3.3.3 Industry and other fields 3.5.2 "Blue-sky" Research 7.3.3.4 Identified R&D themes 3.5.3 Further recommendations on industriali Observations 7.4.1 Organisation and Collaboration ences Chapter 3 . . 7.4.2 Systems Engineering 163 4 Particle Identification and Photon Detectors 7.4.3 Tools and Technologie Interactions outside HEP Skills, Training and Careers 4.2 Main drivers from the facilities 4.3 Key technologies: particle identification 4.3.1 RICH detectors . 7.4.6 Common infrastructure mendations 165 7.5.1 Themes for future R&D 4.3.2 Detectors for Internally Reflected Čerenkov light . Approach to R&D 7.5.2.1 Novel Developments 7.5.2.2 Horizon-Scanning 4.3.3 Time of flight detectors 4.3.4 Particle identification through dE/dx and TRD . . 168 4.4 Key technologies: photon detection . . . 4.4.1 Vacuum-based photon detectors 7.5.2.3 Software 169 7.5.3 Practical and Organisational Issues . 7.5.3.1 Collaborative Model . 7.5.3.2 Demonstrators and Common Developments 4.4.2 Gas-based photon detectors . 169 170 4.4.3 Semiconductor photon detectors 4.4.4 Superconducting photon detectors 7.5.3.3 Infrastructure Needs 4.4.5 Norel optical materials for fibre trackers and light collection 7.5.3.4 Interaction with Industry 172 4.5 Observations References Chapter 7 4.6 Recommendations References Churter 4 176 5 Quantum and Emerging Technologies Detectors 8.3 Key technologies 176 176 179 5.1 Introduction . . 105 8.3.1 Novel magnet systems 8.3.2 Improved technologies and systems for cooling 5.2 Theory Motivation 5.3 Quantum Methodologies and Techniques .

20/01/2022

Gaseous

Liquid

Solid

state

PID and

Photon

Quantur

https://indico.cern.ch/event/949705/contributions/4575435/attachments/2372982/4052970/DetectorRDOverview LP2022 SKuehn.pdf

RESEARCH AND DEVELOPMENT ROADMAP

by the European Committee for Future Accelerators Detector R&D Roadmap Process Group

European Committee

for Future Accelerators

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs) 2035-2040-2030-> 2045 2040 2045 DRDT 1.1 Improve time and spatial resolution for gaseous detectors with long-term stability DRDT 1.2 Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out schemes DRDT 1.3 Develop environmentally friendly gaseous detectors for very large areas with high-rate capability DRDT 1.4 Achieve high sensitivity in both low and high-pressure TPCs DRDT 2.1 Develop readout technology to increase spatial and energy resolution for liquid detectors DRDT 2.2 Advance noise reduction in liquid detectors to lower signal energy thresholds DRDT 2.3 Improve the material properties of target and detector components in liquid detectors DRDT 2.4 Realise liquid detector technologies scalable for integration in large systems

DRDT 3.1 Achieve full integration of sensing and microelectronics in monolith CMOS pixel sensors DRDT 3.2 Develop solid state sensors with 4D-capabilities for tracking and calorimetry

DRDT 3.3 Extend capabilities of solid state sensors to operate at extreme fluences

- DRDT 3.4 Develop full 3D-interconnection technologies for solid state device in particle physics
- DRDT 4.1 Enhance the timing resolution and spectral range of photon detectors
- DRDT 4.2 Develop photosensors for extreme environments DRDT 4.3 Develop RICH and imaging detectors with low mass and high
- resolution timing DRDT 4.4 Develop compact high performance time-of-flight detectors
- DRDT 5.1 Promote the development of advanced quantum sensing technologies DRDT 5.2 Investigate and adapt state-of-the-art developments in quantum technologies to particle physics
- DRDT 5.3 Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies
- DRDT 5.4 Develop and provide advanced enabling capabilities and infrastructure DRDT 6.1 Develop radiation-hard calorimeters with enhanced electromagnetic
- energy and timing resolution DRDT 6.2 Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods
- DRDT 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments
- DRDT 7.1 Advance technologies to deal with greatly increased data density DRDT 7.2 Develop technologies for increased intelligence on the detector
- DRDT 7.3 Develop technologies in support of 4D- and 5D-techniques DRDT 7.4 Develop novel technologies to cope with extreme environments and required longevity
- DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies

DRDT 8.1 Develop novel magnet systems

- DRDT 8.2 Develop improved technologies and systems for cooling DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.
- DRDT 8.4 Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects
- DCT1 Establish and maintain a European coordinated programme for training in instrumentation
- DCT 2 Develop a master's degree programme in instrumentation

20/01/2022

Detector R&D in Support of the European Strategy for Particle Physics: : Phil Allport

Plenary ECFA presentation at <u>https://indico.cern.ch/event/1085137/contributions/4562906/</u> attachments/2349055/4006852/Plenary%20ECFA%20Detector%20R%26D%20Roadmap.pptx

The dates used in these diagrams have a deliberately low precision, and are intended to represent the earliest 'feasible start date' (where a schedule is not already defined), taking into account the necessary steps of approval, development and construction for machine and civil engineering. They do not constitute any form of plan or recommendation, and indeed several options presented are mutually exclusive.

Furthermore, the projects mentioned here are usually limited to those mentioned in the EPPSU, although it should be noted that detector R&D for other possible future facilities is usually aligned with that for programmes already listed.

Detector R&D Roadmap

Plenary ECFA presentation at <u>https://indico.cern.ch/event/1085137/contributions/4562906/</u> attachments/2349055/4006852/Plenary%20ECFA%20Detector%20R%26D%20Roadmap.pptx

20/01/2022

Detector R&D Roadmap

Plenary ECFA presentation at <u>https://indico.cern.ch/event/1085137/contributions/4562906/</u> attachments/2349055/4006852/Plenary%20ECFA%20Detector%20R%26D%20Roadmap.pptx

ECFA

European Committee for Future Accelerators

GSR 1 - Supporting R&D facilities

It is recommended that the structures to provide Europe-wide coordinated infrastructure in the areas of: test beams, large scale generic prototyping and irradiation be consolidated and enhanced to meet the needs of next generation experiments with adequate centralised investment to avoid less cost-effective, more widely distributed, solutions, and to maintain a network structure for existing distributed facilities, e.g. for irradiation

GSR 2 - Engineering support for detector R&D

In response to ever more integrated detector concepts, requiring holistic design approaches and large component counts, the R&D should be supported with adequate mechanical and electronics engineering resources, to bring in expertise in state-of-the-art microelectronics as well as advanced materials and manufacturing techniques, to tackle generic integration challenges, and to maintain scalability of production and quality control from the earliest stages.

GSR 3 - Specific software for instrumentation

Across DRDTs and through adequate capital investments, the availability to the community of state-of-the-art R&D-specific software packages must be maintained and continuously updated. The expert development of these packages - for core software frameworks, but also for commonly used simulation and reconstruction tools - should continue to be highly recognised and valued and the community effort to support these needs to be organised at a European level.

GSR 4 - International coordination and organisation of R&D activities

With a view to creating a vibrant ecosystem for R&D, connecting and involving all partners, there is a need to refresh the CERN RD programme structure and encourage new programmes for next generation detectors, where CERN and the other national laboratories can assist as major catalysers for these. It is also recommended to revisit and streamline the process of creating and reviewing these programmes, with an extended framework to help share the associated load and increase involvement, while enhancing the visibility of the detector R&D community and easing communication with neighbouring disciplines, for example in cooperation with the ICFA Instrumentation Panel.

Plenary ECFA presentation at <u>https://indico.cern.ch/event/1085137/contributions/4562906/</u> attachments/2349055/4006852/Plenary%20ECFA%20Detector%20R%26D%20Roadmap.pptx

ECFA European Committee for Future Accelerators

Detector R&D Roadmap

GSR 5 - Distributed R&D activities with centralised facilities

Establish in the relevant R&D areas a distributed yet connected and supportive tier-ed system for R&D efforts across Europe. Keeping in mind the growing complexity, the specialisation required, the learning curve and the increased cost, consider more focused investment for those themes where leverage can be reached through centralisation at large institutions, while addressing the challenge that distributed resources remain accessible to researchers across Europe and through them also be available to help provide enhanced training opportunities.

GSR 6 - Establish long-term strategic funding programmes

Establish, additional to short-term funding programmes for the early proof of principle phase of R&D, also long-term strategic funding programmes to sustain both research and development of the multi-decade DRDTs in order for the technology to mature and to be able to deliver the experimental requirements. Beyond capital investments of single funding agencies, international collaboration and support at the EU level should be established. In general, the cost for R&D has increased, which further strengthens the vital need to make concerted investments.

GSR 7 - "Blue-sky" R&D

It is essential that adequate resources be provided to support more speculative R&D which can be riskier in terms of immediate benefits but can bring significant and potentially transformational returns if successful both to particle physics: unlocking new physics may only be possible by unlocking novel technologies in instrumentation, and to society. Innovative instrumentation research is one of the defining characteristics of the field of particle physics. "Blue-sky" developments in particle physics have often been of broader application and had immense societal benefit. Examples include: the development of the World Wide Web, Magnetic Resonance Imaging, Positron Emission Tomography and X-ray imaging for photon science.

ECFA

ECFA Detector R&D Roadmap

Plenary ECFA presentation at <u>https://indico.cern.ch/event/1085137/contributions/4562906/</u> attachments/2349055/4006852/Plenary%20ECFA%20Detector%20R%26D%20Roadmap.pptx

Detector R&D Roadmap

European Committee for Future Accelerators

GSR 8 - Attract, nurture, recognise and sustain the careers of R&D experts

Innovation in instrumentation is essential to make progress in particle physics, and R&D experts are essential for innovation. It is recommended that ECFA, with the involvement and support of its Detector R&D Panel, continues the study of recognition with a view to consolidate the route to an adequate number of positions with a sustained career in instrumentation R&D to realise the strategic aspirations expressed in the EPPSU. It is suggested that ECFA should explore mechanisms to develop concrete proposals in this area and to find mechanisms to follow up on these in terms of their implementation. Consideration needs to be given to creating sufficiently attractive remuneration packages to retain those with key skills which typically command much higher salaries outside academic research. It should be emphasised that, in parallel, society benefits from the training particle physics provides because the knowledge and skills acquired are in high demand by industries in high-technology economies.

GSR 9 - Industrial partnerships

It is recommended to identify promising areas for close collaboration between academic and industrial partners, to create international frameworks for exchange on academic and industrial trends, drivers and needs, and to establish strategic and resources-loaded cooperation schemes on a European scale to intensify the collaboration with industry, in particular for developments in solid state sensors and microelectronics.

GSR 10 - Open Science

It is recommended that the concept of Open Science be explicitly supported in the context of instrumentation, taking account of the constraints of commercial confidentiality where these apply due to partnerships with industry. Specifically, for publicly-funded research the default, wherever possible, should be open access publication of results and it is proposed that the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP³) should explore ensuring similar access is available to instrumentation journals (including for conference proceedings) as to other particle physics publications.

Gaseous

PID and

Photon

Quantur

2030-

< 2030

2035-

2040

2040-

2045

ņ

> 2045

71

ດ

C-hh/e

https://indico.cern.ch/event/949705/contributions/4575435/attachments/2372982/4052970/DetectorRDOverview_LP2022_SKuehn.pdf

by the European Committee for Future Accelerators Detector R&D Roadmap Process Group

European Committee

for Future Accelerators

Solid state DRDT 3.2 Develop solid state sensors with 4D-capabilities for tracking and calorimetry DRDT 3.3 Extend capabilities of solid state sensors to operate at extreme

CMOS pixel sensors

fluences DRDT 3.4 Develop full 3D-interconnection technologies for solid state device

DRDT 1.1 Improve time and spatial resolution for gaseous detectors with

DRDT 1.2 Achieve tracking in gaseous detectors with dE/dx and dN/dx capability

DRDT 1.3 Develop environmentally friendly gaseous detectors for very large

DRDT 1.4 Achieve high sensitivity in both low and high-pressure TPCs

DRDT 2.1 Develop readout technology to increase spatial and energy

in large volumes with very low material budget and different read-out

long-term stability

areas with high-rate capability

resolution for liquid detectors

schemes

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

- in particle physics DRDT 4.1 Enhance the timing resolution and spectral range of photon detectors
- DRDT 4.2 Develop photosensors for extreme environments
- DRDT 4.3 Develop RICH and imaging detectors with low mass and high resolution timing
- DRDT 4.4 Develop compact high performance time-of-flight detectors DRDT 5.1 Promote the development of advanced quantum sensing technologies DRDT 5.2 Investigate and adapt state-of-the-art developments in quantum
- technologies to particle physics DRDT 5.3 Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies
- DRDT 5.4 Develop and provide advanced enabling capabilities and infrastructure DRDT 6.1 Develop radiation-hard calorimeters with enhanced electromagnetic
- energy and timing resolution DRDT 6.2 Develop high-granular calorimeters with multi-dimensional readout
- for optimised use of particle flow methods DRDT 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments
- DRDT7.1 Advance technologies to deal with greatly increased data density DRDT7.2 Develop technologies for increased intelligence on the detector DRDT7.3 Develop technologies in support of 4D- and 5D-techniques
- DRDT 7.4 Develop novel technologies to cope with extreme environments and required longevity DRDT 7.5 Evaluate and adapt to emerging electronics and data processing
- technologies DRDT 8.1 Develop novel magnet systems
- DRDT 8.2 Develop mover magnet systems DRDT 8.2 Develop improved technologies and systems for cooling
- DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector
- Interfaces. DRDT 8.4 Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects
- DCT1 Establish and maintain a European coordinated programme for training in instrumentation
- DCT2 Develop a master's degree programme in instrumentation

A (IP)

30 mrad

- Two (possibly four) interaction regions. (<u>https://fcc-cdr.web.cern.ch/#FCCEE</u>)
- Higgs Factory programme: 1.2M $e^+e^- \rightarrow HZ$; 75k $W^+W^- \rightarrow H$; senstivity $H \rightarrow HH$; $e^+e^- \rightarrow H$
- EW: $5 \times 10^{12} Z$; $10^8 W^+W^-$; $10^6 t\bar{t}$ (Indirect sensitivity to new physics up to $\Lambda \gtrsim 70$ TeV)
- Flavour: $10^{12} \ b\overline{b}$, $c\overline{c}$; $1.7 \times 10^{11} \ \tau^{+} \tau^{-}$

Some specifications to control systematic errors at 10⁻⁵ level.

- $\sigma_{p_T}/p_T^2 \approx 2 \times 10^{-5}$ GeV⁻¹ EM resolution ~ few $\%/\sqrt{E}$; jet energy $\leq 30\%/\sqrt{E}$; B-field stable 10⁻⁶ (and < 2T); luminosity ~10⁻⁴; beam energy spread di-muons $\sigma_{\theta} < 0.1$ mrad; 0.2µm secondary vertex flight path resolution.
- PID: K/π separation ($\frac{dE}{dx}$ or $\frac{dN}{dx}$, ToF, RICH) and π^0/γ discrimination; "tracking" calorimetry.
- Two main detector concepts CLIC-Like Detector (CLD) and Innovative Detector for Electron-positron Accelerator (IDEA)

20/01/2022

20/01/2022

CERN-ACC-Note-2020-0002

https://arxiv.org/abs/2007.14491

								EMC		
Parameter	Unit	LHeC	FCC-eh $(E_p=20 \text{ TeV})$	FCC-eh $(E_p=50 \text{ TeV})$	e		Fwd Tracker	Tracker	Bwd Tracker	p//
Ion energy E_{Pb}	PeV	0.574	1.64	4.1						
Ion energy/nucleon E_{Pb}/A	TeV	2.76	7.88	19.7			FEC		BEC	
Electron beam energy E_e	GeV	50	60	60			20 1.0	0.0	1 - 11	
Electron-nucleon CMS $\sqrt{s_{eN}}$	TeV	0.74	1.4	2.2	Ē		\ l .			<u> </u>
Bunch spacing	ns	50	100	100	<u>E</u>	600		R:R:R:	******	-20
Number of bunches		1200	2072	2072	strip	500				
Ions per bunch	10^{8}	1.8	1.8	1.8		400		strip ======	2222	-25
Normalised emittance ϵ_n	μm	1.5	1.5	1.5	-	300				st
Electrons per bunch	10^{9}	6.2	6.2	6.2	pixel	200		macro		-30
Electron current	mA	20	20	20				pixel		, ≠s ma
IP beta function β_A^*	cm	10	10	15	pixel			pixel		4 pi
e-N Luminosity	$10^{32} cm^{-2} s^{-1}$	7	14	35		4000	3000 2000 1000	0	- 500 - 1000 - 1500 -	2000 6.0 z[mn] ¶
2					_		D	LA FOARL	0.4.0	

Table 2.4: Baseline parameters of future electron-ion collider configurations based on the electron ERL, in concurrent eA and AA operation mode with the LHC and the two versions of a future hadron collider at CERN. Following established convention in this field, the luminosity quoted, at the start of a fill, is the *electron-nucleon* luminosity which is a factor A larger than the usual (i.e. electron-nucleus) luminosity.

Barrel & ECAP Layers/Wheels

Retain 1° tracking resolution for electrons and charged particles in jets to $|\eta| \leq 5$.

Solenoid - 6m

Calo (lowE-FCCeh)	EMC		HCAL	
	Barrel	Ecap Fwd	Barrel	Ecap Bwd
Readout, Absorber	Sci,Pb	Sci,Fe	Sci,Fe	Sci,Fe
Layers	49	91	68	78
Integral Absorber Thickness [cm]	36.6	206.0	184.0	178.0
η_{\max}, η_{\min}	2.8, -2.5	2.0, 0.8	1.6, -1.4	-0.7, -1.8
$\sigma_E/E = a/\sqrt{E} \oplus b \qquad [\%]$	12.6/1.1	38.9/3.3	42.4/4.2	40.6/3.5
Λ_I / X_0	$X_0 = 66.2$	$\Lambda_I = 12.7$	$\Lambda_I = 11.3$	$\Lambda_I = 11.0$
Total area Sci [m ²]	2915	4554	12298	3903
Calo (lowE-FCCeh)	FHC	FEC	BEC	BHC
	Plug Fwd	Plug Fwd	Plug Bwd	Plug Bwd
Readout, Absorber	$_{\rm Si,W}$	$_{\rm Si,W}$	Si,Pb	Si,Cu
Layers	296	49	59	238
Integral Absorber Thickness [cm]	256.9	29.6	27.9	220.8
η_{\max}, η_{\min}	5.8, 1.8	5.4, 1.8	-1.5, -5.2	-1.5, -5.6
$\sigma_E/E = a/\sqrt{E} \oplus b \qquad [\%]$	61.9/0.5	26.5/0.4	24.7/0.4	46.7/4.4
Λ_I / X_0	$\Lambda_{I} = 15.5$	$X_0 = 84.7$	$X_0 = 50.2$	$\Lambda_I = 14.7$
Total area Si [m ²]	2479	364	438	1994

20/01/2022

See Martin Aleksa (19/2/21) https://indico.cern.ch/event/994685/

Peak L, nominal (ultimate)	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	1 (2)	5 (7.5)	16	30
Bunch spacing	ns	25	25	25	25
Number of bunches		2808	2760	2808	10600
Goal ∫ L	ab ⁻¹	0.3	3	10	30
σ _{inel} [331]	mb	80	80	86	103
σ_{tot} [331]	mb	108	108	120	150
BC rate	MHz	31.6	31.0	31.6	32.5
Peak pp collision rate	GHz	0.8	4	14	31
Peak av. PU events/BC, nominal (ultimate)		25 (50)	130 (200)	435	950
Rms luminous region σ_z	mm	45	57	57	49
Line PU density	mm^{-1}	0.2	1.0	3.2	8.1
Time PU density	ps ⁻¹	0.1	0.29	0.97	2.43
$dN_{ch}/d\eta _{n=0}$ [331]		6.0	6.0	7.2	10.2
Charged tracks per collision N _{ch} [331]		70	70	85	122
Rate of charged tracks	GHz	59	297	1234	3942
$< p_T > [331]$	GeV/c	0.56	0.56	0.6	0.7
Bending radius for $< n_T >$ at B=4 T	cm	47	47	49	59

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
Total number of pp collisions	10^{16}	2.6	26	91	324
Charged part. flux at 2.5 cm, est.(FLUKA)	GHz cm ⁻²	0.1	0.7	2.7	8.4 (10)
1 MeV-neq fluence at 2.5 cm, est.(FLUKA)	$10^{16} \mathrm{cm}^{-2}$	0.4	3.9	16.8	84.3 (60)
Total ionising dose at 2.5 cm, est.(FLUKA)	MGy	1.3	13	54	270 (300)
$dE/d\eta _{\eta=5}$ [331]	GeV	316	316	427	765
$dP/d\eta _{\eta=5}$	kW	0.04	0.2	1.0	4.0
90% bb $p_T^{\rm b} > 30 {\rm GeV/c} [332]$	$ \eta <$	3	3	3.3	4.5
VBF jet peak [332]	$ \eta $	3.4	3.4	3.7	4.4
90% VBF jets [332]	$ \eta <$	4.5	4.5	5.0	6.0
$90\% \text{ H} \rightarrow 4l \text{ [332]}$	$ \eta <$	3.8	3.8	4.1	4.8

20/01/2022

See Martin Aleksa (19/2/21) https://indico.cern.ch/event/994685/

Forward solenoid adds about 1 unit of η with full lever-arm Forward solenoid requires additional radiation shield to connect endcap and forward calorimeter

Aim of FCC-hh CDR was to prove that with known detector techniques the primary physics goals could be met (see https://fcc-cdr.web.cern.ch/#FCCHH)

Largest challenge is that radiation levels go well beyond what any currently available microelectronics can survive (\lesssim MGy) and few sensor technologies can cope beyond ~10¹⁶n_{eq}/cm² (HL-LHC vertex layers)

However, these radiation levels mean no actual technologies currently exist to instrument much of the detector volume

We've been here before ...

Detector R&D

- From <u>1986</u>, vigorous CERN programme with 40 MCHF funding from Italian government (Zichichi's LAA Project)
- CERN Detector R&D Committee set up mid <u>1990</u>. By March 1992: 35 proposals, 24 approved – involving 800 people in 170 institutes

"Genesis of the LHC" C. Llewellyn Smith, Phil Tran Roy Soc A373:20140037 (2016) http://dx.doi. org/10.1098/rsta.2014.0037

- 1987 La Thuile Workshop
- 1989 Barcelona Workshop
- 1990 Aachen Workshop
- 1992 ECFA*-CERN** Evian Worksop:

Expressions of Interest presented:

ASCOT (central solenoid + outer toroid) EAGLE (central solenoid + outer toroid) CMS (large solenoid) Upgraded L3 detector (large solenoid)

20/01/2022

LARGE HADRON COLLIDER IN THE LEP TUNNEL

Vol. I

PROCEEDINGS OF THE ECFA-CERN WORKSHOP

held at Lausanne and Geneva, 21-27 March 1984

Detector Research and Development Committee (DRDC), 1990 - 1995

The Detector Research and Development Committee (DRDC) was set up in July 1990. It received proposals for detector R&D involving people from Member States, other countries, and CERN itself. The committee operated in the same way as the other experimental committees of CERN, and forwarded its recommendations to the Research Board for final decision. It held its last meeting in January 1995. Its role was taken over by the LHC Committee (LHCC).

First pages of the Proceedings of the LHC workshops held in Lausanne, 1984, and Aachen, 1990 [ECFA-CERN 1984] [Jarlskog, Rein 1990]. Note the early design of the machine layout in the LEP tunnel, with the LHC and the LEP rings together. Coexistence of the two machines was considered up to 1995, when it was dismissed by Chris Llewellyn Smith at the Lepton-Photon Conference in Beijing.

US and EU International R&D Programmes

DOE-BRN Report published (Sep. 2020) https://science.osti.gov/hep/Community-Resources/Reports

New AIDAinnovaCall / Objectives:

- Support research infrastructure networks developing and implementing a common strategy/ roadmap including technological development required for improving their services through partnership with industry
- Support incremental innovation and cooperation with industry
- Complementarity to ATTRACT
- Increased focus on industrial partners
- No Transnational Access Proposed
- Funding 10 M€ for 4 years

Some targeted applications:

- Higgs Factories
- ATLAS, CMS LS4, ALICE, LHCb LS3 pre-TDR
- Accelerator-based neutrino experiments

Snowmass Instrumentation Frontier: The Snowmass Process is organized by the DPF of the American Physical Society: https://snowmass21.org

- Identify and document a vision for the future of particle physics (PP) in the US in a global context
- Communicate opportunities for discovery in PP to broader community and to the (US) government.
- Aim for Snowmass Book and online archive by end of 2022
- <u>https://snowmass21.org/instrumentation/start</u> Conveners: P. Barbeau, P. Merkel, J. Zhang

Snowmass Summary for Public - 2 pages		Snowm « Commu	ass Report
Snowmass Summary Report – ~50 pages	:]	Executive Summary: "10 pages Introduction 10 Fontier Executive Summaries Executive Summaries of Multi-Frontier Topics Conclusion	
Snowmass Book – "500 pages	:	Snowmass Summary Report (~50 pages) Frontier Summaries (~400 pages with 10 Frontiers) Multi-Frontier Topic Summaries (~50 pages)	IF Frontier Summary: 40 pages
Topical Group Reports	{ _.	Topical Group Reports: short reports	(Written by TG members including early careers)
Reports of Multi-Frontier Topics	{.	Multi-Frontier Topics spanning multiple Frontiers. Each Multi-Frontier Topic Summary: "10 page	(Written by the

References

(Written by the community including early careers)

Higgs Factory Detector R&D

Detector Techn	ology	Linear & Circular Colliders common R&D	Differences	
All		test infrastructure prototype electronics software for reconstruction and optimisation	readout rates power and cooling requirements	
Silicon Vertex Track Detect	and	highest granularity and resolution, timing ultra-thin sensors and interconnects simulation and design tools low-mass support structures cooling micro-structures	emphasis on timing (background) and position resolution	
Gaseous Tracke Muon Chamb	rs and ers	ultra-light structures for large volumes industrialisation for large area instrumentation eco-friendly gases	DC and TPC presently considered only at some colliders	
Calorimeters Particle ID	and	highly compact structures and interfaces advanced photo-sensors and optical materials ps timing sensors and electronics	emphasis on granularity and stability DR and LAr pesresently only considered for circular	

CERN EP R&D

- Following tradition of DRDC (LHC Phase-0), White Paper R&D (LHC Phase-I)
- Target beyond approved LHC upgrades: e.g. FCC-ee/eh/hh
- Strong links/overlap with RD50, RD51, RD18 and AIDAinnova
- See materials at <u>https://ep-rnd.web.cern.ch/</u>.

2035-

2040-

- -

2030-

https://indico.cern.ch/event/949705/contributions/4575435/attachments/2372982/4052970/DetectorRDOverview_LP2022_SKuehn.pdf

by the European Committee for Future Accelerators Detector R&D Roadmap Process Group

for Future Accelerator

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

			< 2030	2035	2040	2045	2043
	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with long-term stability			-	-	
seous	DRDT 1.2	Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out		•	•	-	
	DRDT 1.3	schemes Develop environmentally friendly gaseous detectors for very large areas with bint-rate capability		-	-		
	DRDT 1.4	Achieve high sensitivity in both low and high-pressure TPCs		•		-	1 1
	DRDT 2.1	Develop readout technology to increase spatial and energy resolution for liquid detectors				7	2
	DRDT 2.2	Advance noise reduction in liquid detectors to lower signal energy thresholds				ö	¥
quia	DRDT 2.3	Improve the material properties of target and detector components in liquid detectors		•		0	2
	DRDT 2.4	Realise liquid detector technologies scalable for integration in large systems				Ø	e -
	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic	-	•	•	-	-
olid	DRDT 3.2	Develop solid state sensors with 4D-capabilities for tracking and calorimetry		-	-		
tate	DRDT 3.3	Extend capabilities of solid state sensors to operate at extreme fluences			_	-	-
	DRDT 3.4	Develop full 3D-interconnection technologies for solid state devices in particle physics		-	-	-	
	DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors		•	-	-	-
noton	DRDT 4.2	Develop photosensors for extreme environments		-		-	
	DRDT 4.3	Develop RICH and imaging detectors with low mass and high resolution timing				*	
	DEDT 4.4	Develop compact righ penormance time-ot-hight detectors					
antum	DRDT 5.2	Investigate and adapt state-of-the-art developments in quantum technologies to particle physics		-	-	->	
antani	DRDT 5.3	Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies		-			
	DRDT 5.4	Develop and provide advanced enabling capabilities and intrastructure	-	_		1.1	
	DRDT 6.1	Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution Develop high-previat calorimeters with multi-dimensional reactourt		-			
rimetry		for optimised use of particle flow methods					1.1
	DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up environments					-
	DRDT 7.1	Advance technologies to deal with greatly increased data density		-		-	-
	DRDT 7.2	Develop technologies for increased intelligence on the detector				-	
tronics	DRDT 7.3	Develop technologies in support of 4D- and 5D-techniques				-	
	DRDT 7.4	Develop novel technologies to cope with extreme environments and required longevity					
	DRDT 7.5	Evaluate and adapt to emerging electronics and data processing technologies					
	DRDT 8.1	Develop novel magnet systems					
an mark	DEDTAT	Adapt novel materials to achieve ultralight, stable and bigh					
gration	0.010.0	Interfaces.	_				
	DRDT 8.4	Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects			-		
ining	DCT1	Establish and maintain a European coordinated programme for training in instrumentation		******			-
	DCTO	De altre a masteria desera assessmente la inste mantation					

20/01/2022

Vertex Detectors

Detectors for FCC-ee draw heavily on those for LCs but without power cycling as an

aid to reducing cooling requirements. Target per layer spatial resolution of $\leq 3\mu m$ and $\frac{X}{X_0} \leq 0.05\%$ cf <u>ALICE3</u>

using CMOS pixel sensors. → Key is low power.

For FCC-hh the challenge is extreme radiation levels both 300MGy for microelectronics and integrated fluence for the sensors of 8

Parameter	ALPIDE (existing)	Wafer-scale sensor (this proposal)
Technology node	180 nm	65 nm
Silicon thickness	50 μm	20-40 μm
Pixel size	27 x 29 μm	O(10 x 10 µm)
Chip dimensions	1.5 x 3.0 cm	scalable up to 28 x 10 cm
Front-end pulse duration	~ 5 µs	~ 200 ns
Time resolution	$\sim 1 \ \mu s$	< 100 ns (option: <10ns)
Max particle fluence	100 MHz/cm ²	100 MHz/cm^2
Max particle readout rate	10 MHz/cm^2	100 MHz/cm^2
Power Consumption	40 mW/cm^2	$< 20 \text{ mW/cm}^2$ (pixel matrix)
Detection efficiency	> 99%	> 99%
Fake hit rate	< 10 ⁻⁷ event/pixel	$< 10^{-7}$ event/pixel
NIEL radiation tolerance	$\sim 3 \times 10^{13}$ 1 MeV n _{eq} /cm ²	10^{14} 1 MeV n_{eq}/cm^2
TID radiation tolerance	3 MRad	10 MRad

Exploiting flexible nature of thin silicon and stitching

fluence for the sensors of $8 \times 10^{17} n_{eq}/cm^2 \rightarrow both represent enormous challenges.$

In addition fast timing is desirable: ≤ 50 ps targeted for <u>LHCb LS4</u> simultaneous with $\leq 10 \mu m$ and $\frac{X}{X_0} \leq 1\%$. • FCC-hh targets ≤ 20 ps , $\leq 7 \mu m$ and $\frac{X}{X_0} \leq 1\%$ but <u>at the above fluence</u>.

Hybrid technologies with thin, 3D-structures (columns/trenches) silicon and/or high bandgap materials (*eg* diamond) are mostly considered for really high radiation environments.

Ultra-fast silicon detectors (UFSDs) with various Low-Gain Avalanche Detector developments to reduce/remove inter-pixel (JTE) structures – trench isolation; AC LGADs; inverse LGADs.

The dream remains a truly monolithic solution with all the above properties. 20/01/2022 Detector R&D in Support of the European Strategy for Particle Physics: Phil Allport

Tracking Detectors

For e^+e^- experiment trackers, gaseous large volume detectors are attractive such as TPCs with Micro-Patter Gas Detector (MPGD) or even direct pixelated readout or, given for FCC-ee the constraints of high (70kHz) physics rates with continuous collision rates (no gating) \rightarrow highly transparent <u>drift detector</u>: (90% He – 10% iC₄H₁₀), $\frac{X}{X_0} \leq 1.6\%$ (radius 0.35 – 2.00) thin tungsten wires and dE/dx or dN/dx (cluster counting) particle identification (PID)

CLD: silicon $\frac{X}{X_0} \le 1\%$ per layer (3 inner + 3 outer barrels and 7 + 4 disks). Attractive to consider CMOS sensors *cf* <u>ALICE ITS</u> (10m², ~10¹⁰ channels).

Note B field limited to 2T due to 30mrad beam crossing of e^+e^- beams,

Also, even with gaseous large volume tracker (IDEA), still anticipate a "silicon wrapper".

FCC-eh and FCC-hh consider silicon tracking assuming, conservatively, hybrid (either macropixel + strip) solutions, but CMOS monolithic active pixel sensor (MAPS) options of strong interest. FCC-hh radiation tolerance an issue even at r > 30 cm, requiring ~10¹⁶n_{eq}/cm², 10 MGy survival which can be achieved with HL-LHC hybrid pixels but needs work for MAPS designs, *esp* with small collection electrodes (which offer lower power and higher speed).

<u>4D tracking</u> (with <25ps timing via LGAD or other technology) as opposed to just timing layers (such as LHC high granularity timing detectors) hugely benefits pile-up suppression at FCC-hh.

Calorimetry

Options for e^+e^- for include: dual-readout (IDEA: f_{EM} from absorber with combined scintillator parallel plates and Čerenkov PMMA fibres); high granularity LAr/LKr; finely segmented crystals or <u>Particle Flow</u> (CLD) based on a "tracking calorimeter" concept with very fine sense element segmentation.

20/01/2022

Calorimetry

eh: combination of scintillator and absorber and silicon with W, Pb and Cu for forward

hh: issues include unprecedented doses, massive size and huge particle flux

SiW/Pb ECAL (*cf* <u>CMS</u> HGCal) and digital ECAL with CMOS studied as futuristic barrel option with enhanced PF capabilities (see M. Aleksa et al. *arXiv:1912.0996*).

20/01/2022

PID, Photodetectors and Microelectronics

Although not in the layouts shown, additional dedicated compact PID concepts highly desirable (eg Detection of Internally Reflected Čerenkov light, Time of Flight, ...)

Note: precision timing (ToF; 4D tracking), ultra-high granularity and improved signal resolution all come at a cost in terms of data handling, processing, complexity and power.

These inevitably require exploiting the latest advances in commercial photodetectors,

microelectronics and high-speed links.

Birmingham Instrumentation

aboratory for Particle physics

However, increasing sophistication, entry cost and complexity demand <u>radically</u> <u>different approaches to those historically</u> <u>adopted by the HEP community</u>.

The need for bespoke solutions for even modest radiation or magnetic fields is a further problem as these are not commercial drivers, with HEP at best a niche low volume market.

Much of the ECFA Detector R&D Roadmap is dedicated to discussion of the need for better organisation and coordination across Europe to cope with these considerable challenges.

Combining signatures from different devices and improved online intelligence, along with many aspects of data analysis, can also benefit greatly from cutting edge AI developments.

20/01/2022

Muons, Magnets and Integration

- Upgrades to a number of systems used at the LHC for tracking, muon spectroscopy and triggering have taken advantage of the renaissance in gaseous detectors (esp MPGDs)
- Gaseous detectors remain the most-cost effective route to instrumenting very large areas where rates are still low compared with central tracking and offer very competitive timing through Multi-gap Resistive Plate Chambers (MRPCs) and Fast Timing MPGS (FTMs).
- However challenges remain in terms of pushing spatial and temporal resolution without compromising long-term stability and adopting more eco-friendly gas mixtures.
- Investigation of novel superconductors for magnet systems as well as support of expert design capabilities and modelling software for future experiments is vital.
- Cooling technologies for cryogenics and low-mass heat removal from on-detector electronics and semiconductor sensors require dedicated generic R&D activities.
- Ultra low mass, stable, precision mechanics and machine detector interface design are major topics, particularly to realise the physics goals of FCC-ee and FCC-eh.
- Novel materials and enhanced radiation testing capabilities will be vital for FCC-hh.
- Evaluation infrastructures, teat-beams, access to advanced engineering tools and personnel, retention and training of detector experts and much more are detailed in the ECFA Detector R&D Roadmap as mandatory to the success or the FCC programme as well as the long-term health of experimental particle physics as a whole.

Conclusions and Observations

- Major R&D funding for the LHC detector R&D programme was in place from 1986.
- The ECFA Detector R&D Roadmap starts from the principle of needing to identify the mission critical detector R&D for all the future programmes considered as viable options in the 2020 Update to the European Strategy for Particle Physics.
- Mission critical for different facilities means different things:
 - For FCC-hh, at the energy frontier, it may mean finding technologies that function adequately for long enough given the extreme conditions and requirements.
 - For FCC-ee/eh, at the luminosity frontier, the issue is not to be systematics limited by the detector performance such that the unprecedented statistical precision is wasted.
- The FCC programme as envisaged in the updated European Strategy for Particle Physics represents an exciting but very challenging future for particle physics in Europe.
- Without the required investment in detector R&D the opportunities this offers will be squandered installing a LEP experiment at the FCC-ee would be as pointless as installing a LHC experiment at the FCC-hh.
- → Lead times of at least 20 years should be anticipated for the more demanding technology aspects and in some cases (eg sensors or microelectronics for FCC-hh) it is not even currently clear what would be the best direction to go in to meet the most extreme radiation-hardness specifications.

BACK-UP

Silicon Sensor Technology Developments

Many different silicon detector technologies for particle tracking have been developed over the last four decades.

- Silicon strips
- Multiplexing ASICs
- CCDs

DELPHI

CDF

1990

2010

NA14

1980

 Hybrid planar pixels Drift detectors DEPFET Hybrid 3D pixels

2000

Silicon-on-insulator pixels

Vertical 3D integration

 Depleted MAPS Fast-timing detectors Hybrid MAPS

Applications of silicon strip and pixel-based particle tracking detectors - Nature Reviews Physics - https://doi.org/10.1038/s42254-019-0081-z Allport2019ER

What is remarkable is that every decade the instrumented areas have increased by a factor of 10 while the numbers of channels in the largest arrays have increased by a factor of 100.

This despite other specifications for readout speed, spatial resolution, reduced multiple scattering (minimal total material including cooling and services) and radiation hardness also becoming much more demanding

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Historical Microelectronics Evolution

Microelectronics doubling times were < 2 years but now slowing. However, CMOS nodes used by particle physics lag significantly behind. Sensor technology feature size lags even further behind – just starting with TPSCo 65nm CMOS Imaging Sensor

20/01/2022

Compact Calorimetry: CALICE

 The concept of SiW calorimetry has long been under consideration as a possible option within the CALICE collaboration as offering unprecedented granularity for PFA and is the focus of extensive prototyping and test beam activities

20/01/2022

CALICE: SiW EM Calorimetry

Milestone	Date	Object	Details	REM	CAL
1 st ASIC proto	2007	SK1 on FEV4	36 ch, 5 SCA	proto, lim @ 2000 mips	CAL
1 st ASIC	2009	SK2	64ch, 15 SCA	3000 mips	Int
1 st prototype of a PCB	2010	FEV7	8 SK2	COB	• 15 • 2 1
1 st working PCB	2011	FEV8	16 SK2 (1024 ch)	CIP (QGFP)	- 2.1
1 st working ASU in BT	2012	FEV8	4 SK2 readout (256ch)	best S/N ~ 14 (HG), no PP retriggers 50– 75%	
1 st run in PP	2013	FEV8-CIP		BGA, PP	
1 st full ASU	2015	FEV10	4 units on test board 1024 channel	S/N ~ 17–18 (High Gain) retrigger ~ 50%	DESY
1 st SLABs	2016	FEV11	7 units		https://
pre-calo	2017	FEV 11	7 units	S/N ~ 20 (12) _{Trig.} 6–8 % masked	
1 st technological ECAL	2018	SLABvFEV11 & FEV13 SK2a+ Compact stack Long Slab	SK2 & SK2a (⊃timing) 8 ASUs	Improved S/N Timing	8
1 st working COB	2019	FEV-COB	2×1/4 ASUs		hitmap_trig_xy_
Different	FEV10)-12 FE	V_COB	FEV13	0 40 20 20 20
Different generations of Active Sensor Units and FE					

CALICE SiW ECAL Test Beam

- culmination of 10 years of prototyping
- Integrated front-end and digital electronics
- 15 layers with 15360 channels
- 2.1 mm (x11) and 4.2 mm (x3) tungsten

DESY Test Beam November 2021 https://aitanatop.ific.uv.es/aitanatop/siwecal-tb2021/

20/01/2022

PCBs (FEV)

- Some of the R&D being discussed here grew ٠ out of ideas within CALICE, but initially with a view to FCC-hh, inspired also by developments within CMS for Phase-II
- Given the very high radiation environments, **CMS** is building the High Granularity Calorimeter (HGCAL) as the upgrade path Silicon for their forward calorimetry at HL-LHC
- The HGCAL will have ~600m² of silicon sensors (~500m² of scintillators) with 6M Si channels, 0.5 or 1.1 cm cell size and overall ~27000 silicon modules
- The ECAL has 28 layers with Si + Cu/CuW/Pb absorbers giving 26 X_0 and ~1.7 λ

1.3, 1.4 Silicon sensors and modules

Silicon module costs ~4\$ / cm²

GRAND TOTAL

D. Barney, https://indico.cern.ch/event/718124/

20/01/2022

Detector R&D in Support of the European Strategy for Particle Physics: Phil Allport

CMS

se-2 Upgrade of the

Technical Design Report

Particle Flow Considerations

- In addition to vertexing, silicon detectors are widely assumed to be an important option for outer tracking either for a fully silicon "compact" tracker (often with high field) or outside a gaseous tracking volume (as "silicon wrapper" see for example Attilio Andreazza: <u>https://indico.cern.ch/event/838435/contributions/3672992/</u> <u>attachments/1970363/3277344/LargeSiliconSystems_v2.pdf</u> at 3rd FCC Workshop).
- Silicon detectors also technology of choice where high radiation, high speed or high granularity requirements; either in collider or fixed target experiments.
- The PFA concept requires excellent extrapolation of charged tracks into the calorimeter layers as well as high spatial resolution on EM showers (including resolving photons from high energy π^0 decays) and the start of hadron showers.
 - Silicon layers (with tungsten or lead absorber) are also a leading candidate for such high granularity calorimeters, at least as far as the technology can be cost effective.

SiW ECAL CMOS MAPS Motivation

- Current hybrid strip and pixel costs are still a major consideration (ATLAS Upgrade costs from Attilio Andreazza "Large Silicon Systems" at 3rd FCC Workshop, CERN January 2020, referenced above)
- Even CMS HGCAL silicon module costs ~4CHF/cm² (40kCHF/m²) would still need to come down further for many thousand m² (» 10⁷cm²) array to become affordable
- NB partially mitigated by cost savings from reducing ECAL thickness (eg for FCC-hh) to < 20cm and removing need for cryostat with respect to LAr. (Depending in inner radius, could reduces total cost of HCAL, magnet system and muon spectrometer by up to factor of 2)
- Excellent PFA capabilities but difficult to match LAr for cost, radiation-hardness and EM energy resolution
- For a hybrid silicon system (such as the CMS HGCAL), at some stage the price of polished high- ρ wafers could set a lower limit to what overall costs might be possible with separate thick depleted silicon substrate (although other options may exist)
- For both vertexing and outer tracking, thinking for silicon technology at future colliders is moving towards the use of CMOS Monolithic Active Pixel Sensors

	Strip	Pixels
Area	165 m ²	13 m ²
Power density	43 mW/cm ²	700 mW/cm^2
Module cost (TDR)	36900 kCHF	25067 kCHF
	224 kCHF/m ²	1900 kCHF/m ²

11th FCC - ee Workshop — M. Aleksa

SiW ECAL CMOS MAPS Motivation

- Currently, CMOS Imaging Sensors represent a ~20B\$ business internationally ٠ (https://www.marketsandmarkets.com/Market-Reports/cmos-image-sensor-market-252212367.html) and market expected to continue growing rapidly driving down prices for such detectors
- Although existing CMOS sensor array (such as for ALICE ITS Monolithic Active Pixel Sensor) cost estimates can typically be ~5-10 times* those for CMS HGCAL, expect prices could be significantly lower for much larger orders and as a function of time, while integration of electronics within the sensor also reduces cost of full system
- **Prototypes (see later) demonstrate concept of digital ECAL with same CMOS** fabrication line that CERN and collaborators have shown, with appropriate design and processing, is now delivering radiation hardness to > 10¹⁵n_{ed}/cm²

Cost

(kCHF)

12039

5000

3500

1000

500

SiW ECAL CMOS MAPS Motivation

- Currently, CMOS Imaging Sensors represent a ~20B\$ business internationally (<u>https://www.marketsandmarkets.com/Market-Reports/cmos-image-sensor-market-252212367.html</u>) and market expected to continue growing rapidly driving down prices for such detectors.
- Although existing CMOS sensor array (such as for ALICE ITS Monolithic Active Pixel Sensor) cost estimates can typically be ~5-10 times* those for CMS HGCAL, expect prices could be significantly lower for much larger orders and as a function of time, while integration of electronics within the sensor also reduces cost of full system.
- Prototypes (see later) demonstrate concept of digital ECAL with same CMOS fabrication line that CERN and collaborators have shown, with appropriate design and processing, is now delivering radiation hardness to > 10¹⁵n_{eq}/cm².

The Digital EM Calorimeter Concept

Idea initially in context of CALICE but then adapted to FCC-hh environment.

Simulated 4 different geometries: 30 Layers, 3.5mm W ($30 \times 1.0 X_0$) 5.6mm Pb 50 Layers, 2.1mm W ($50 \times 0.6 X_0$) 3.4mm Pb

Silicon Calorimetry

 For single electrons, similar performance of Digital ECAL (with realistic channel threshold per pixel of 480e*) and Analogue ECAL (with perfect performance and full substrate signal per pad) up to around 300GeV (4T field without pile-up)

• Above this energy, saturation (more than one hit per $50\mu m \times 50\mu m$ pixel) starts to impact performance of digital compared with analogue ECAL

*6 $\times \sigma$ assuming noise of $\sigma = 80e$

ALICE FoCal MAPS R&D

T. Peitzmann: "R&D for the ALICE-FoCal Detector Proposal -Towards Truly High-Granularity Calorimeters"; CERN Detector Seminar 25/10/19

H. Yokoyama: "Test beam performance of a digital pixel calorimeter", T. Rogoschinski: "Simulation of a SiW pixel calorimeter": TIPP 26/5/21
Longitudinal segmentation

Small Diode CMOS Prototyping

Developments with STFC CMOS Sensor Design Group (CSDG) in technology also used for ALPIDE and MALTA developments by CERN

Walter Snoeys FCC workshop CERN, Jan 14, 2020 The INMAPS process: quadruple well for full CMOS in the pixel

STFC development, in collaboration with TowerJazz Additional deep P-well implant allows complex in-pixel CMOS and 100 % fill-factor New generation of CMOS sensors for scientific applications (TowerJazz CIS 180nm) Also 5Gb/s transmitter in development Sensors 2008 (8) 5336, DOI:10.3390/s8095336 https://iopscience.iop.org/article/10.1088/1748-0221/7/08/C08001/meta https://iopscience.iop.org/article/10.1088/1748-0221/14/01/C01006/meta http://pimms.chem.ox.ac.uk/publications.php ...

courtesy of N. Guerrini, STFC

Developments with STFC CMOS Sensor Design Group (CSDG) in technology also used for ALPIDE and MALTA developments by CERN

CSDG have also developed many applications of large format sensors for space, electron microscopy, x-ray detection and medical imaging.

Birmingham Instrumentation

aboratory for Particle physic

In radiotherapy, FLASH (2–40 Gy in less than 500ms) and Mini–beam or Micro–beam (sub mm) treatments currently very exciting as found to greatly improved sparing of healthy tissue (both x–ray and hadrons)

One recent example using the LASSENA senor shows resolution (contrast) better than film with fast (34fps) real time image

Needs further development For use at hadron facilities

"Evaluation of a pixelated large format CMOS sensor for x-ray microbeam radiotherapy" Medical Physics, 2020

20/01/2022

Small collection electrode development

- □ The small collection electrode design has a very small detector capacitance that allows to design a compact, low power FE → small pixels and low material
 - <5fC for small electrode vs. a few hundred fC for large electrode</p>

Estimated power consumption of ITk full scale 2x2 cm² DMAPS

Architecture	TJ Asynch.	TJ Synch.	LF Synch.
Coll. Elect.	Small	Small	Large
Pixel size	$36.4 \times 36.4 \mu\text{m}^2$	$36.4 \times 40 \mu m^2$	$50 \times 150 \mu m^2$
Number of pixels	512×512	512×512	400×132
Matrix Analog Power	238 mW	238 mW	1000 mW
	$(\sim 0.9\mu W/pixel)$	$(\sim 0.9\mu W/pixel)$	(∼ 18µW/pixel)
Matrix Digital Power	12 mW	240 mW	80 mW
	$(\sim 0.05\mu W/pixel)$	$(\sim 0.9\mu W/pixel)$	$(\sim 1.5\mu W/pixel)$
Periphery Digital Power	267 mW	225 mW	225 mW
Total Expected Power	514 mW	703 mW	1305 mW

MALTA TJ-MONOPIX LF-MONOPIX

https://doi.org/10.1088/1748-0221/14/06/C06019

- Radiation-hardness is challenging, significant effort to develop process modifications (CERN/TJ collaboration)
- Different readout architectures explored for low power readout at high rate
 - MALTA: novel asynchronous architecture
 - TJ-MONOPIX: synchronous column drain architecture

CERN TJ Developments

From ALPIDE, CERN has further developed the radiation hardness of the TJ process

More Observations on CMOS Costs

- Getting prices for commercial CMOS Imaging Sensors (CIS) not so easy, but entry costs (NRE, design, etc) are progressively higher with smaller feature size, so R&D prototyping expenses make it highly advantageous to have more common developments.
- Cost per transistor, rather than cost per area, tends to be what Moore's law scaling drives down most quickly (but we do not need cutting edge).

(Clearly for our purposes, we care about larger area, as well as greater functionality, unlike the main commercial drivers)

Source: Holt (2005)

Historical Development of Silicon

The highest channel count arrays are based on pixelated detectors. For hybrid pixel sensors connection to the electronics requires flip-chip technologies.

passivation

250nm

CMS

Medipix

ATLAS FE-I3

<1Gb/s/cm²

40-160 Mb/s

charged / particle

pixel

p+

 \mathbf{n}^{+}

Δ1

contact metal

bump

contact metal

electronics chip

Sensor Arrays

20/01/2022

Hybrid Pixel

Readout

Minimum feature size

Typical hit data storage

density capabilities

Output Bandwidth

ASICs

Example Read-out

Hybrid Pixel Chips

Detector R&D in Support of the European Strategy for Particle Physics: : Phil Allport

UNIVERSITYOF

Radiation Effects: Sensors and Electronics

20/01/2022

◊Many different effects◊

Birmingham Instrumentation

BIL PA and Applications

_aboratory for Particle physics

particle energy [MeV] Detector R&D in Support of the European Strategy for Particle Physics: Phil Allport

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

10

10.12

0.2

-0.4

Vg [V]

MAPS: HV/HR-CMOS Detectors

(b) The extra deep p-well (left) and n- gap (right) substrates

20/01/2022