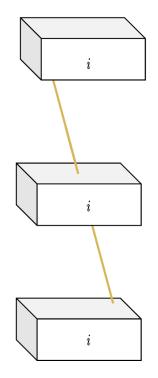
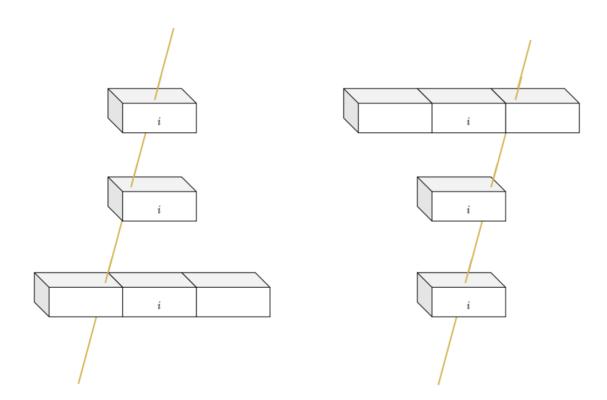
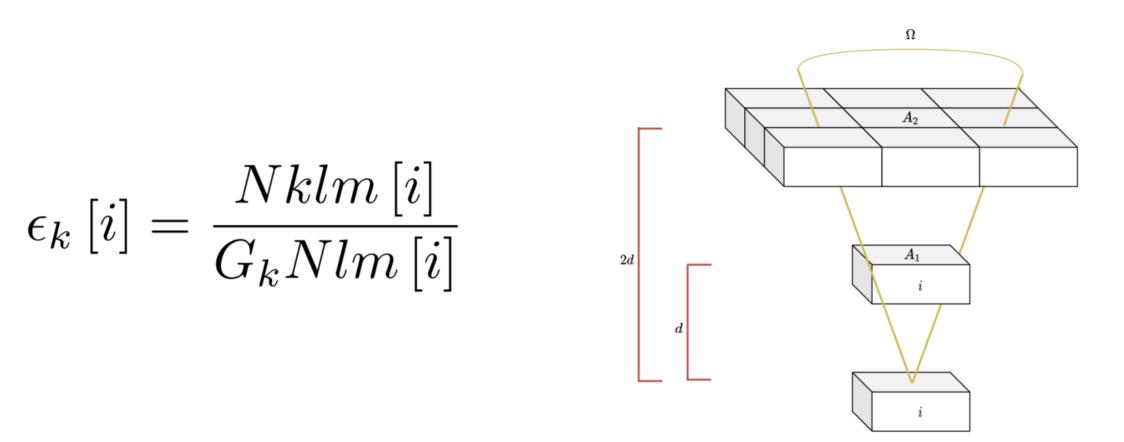

Muography: detector analysis


LouMu meeting 19-10-2021

Detector


Vertical efficiency Initial formulation

$$\epsilon_{2}\left[i\right] = \frac{N123\left[i\right]}{N13\left[i\right]}$$



Vertical efficiency

Initial formulation

Vertical efficiency Initial formulation

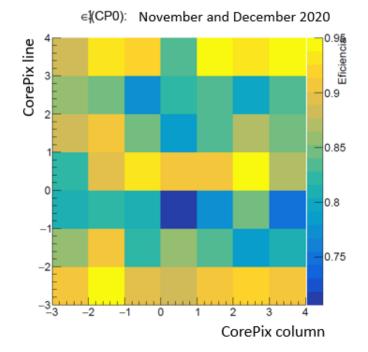
Increases of 2-5 %

Acquisition period		ϵ_1	ϵ_2		ϵ_3	
Acquisition period	Mean	Uncertainty	Mean	Uncertainty	Mean	Uncertainty
August 2020	-	-	-	-	80.7	0.6
September 2020	-	-	-	-	76.0	0.7
November and December 2020	81.9	0.5	77.8	0.5	81.8	0.5
January and February 2020	83.5	0.4	78.1	0.5	85.0	0.4
April and May 2021	84.0	0.6	78.1	0.7	82.6	0.6
May and June 2021	80.3	0.5	72.0	0.5	79.2	0.5
1 - 14 September 2021	82.3	0.8	71.7	0.9	79.6	0.8
15 - 26 September 2021	76.8	0.8	67.5	0.9	76.0	0.8

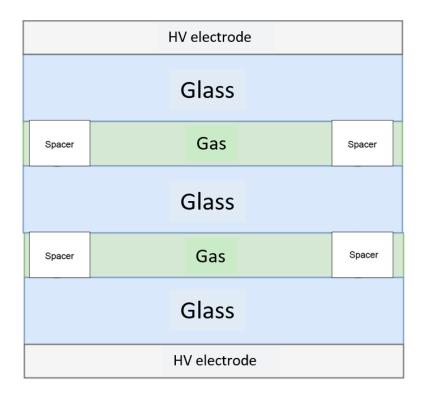
Acquisition period		ϵ_1		ϵ_2	ϵ_3		
Acquisition period	Mean	Uncertainty	Mean	Uncertainty	Mean	Uncertainty	
August 2020	-	-	-	-	82.4	0.7	
September 2020	-	-	-	-	78.7	0.7	
November e December 2020	84.0	0.5	80.6	0.6	83.4	0.5	
January and February 2020	85.7	0.4	82.5	0.5	87.1	0.4	
April and May 2021	86.2	0.7	81.2	0.8	84.3	0.7	
May and June 2021	84.8	0.5	75.5	0.6	80.8	0.5	
1 - 14 September 2021	85.3	0.9	75.8	1.0	81.7	0.9	
15 - 26 September 2021	80.1	0.9	72.1	1.0	78.6	0.9	

Vertical efficiency Calculation optimization: plane 0 as a filter

Increases of 2 - 3 %

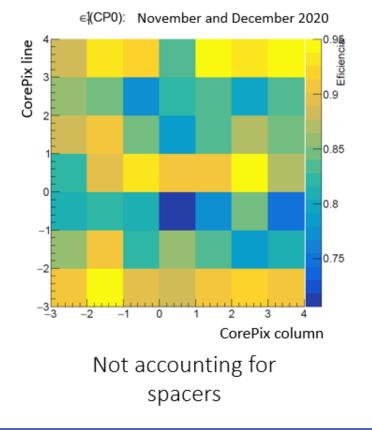


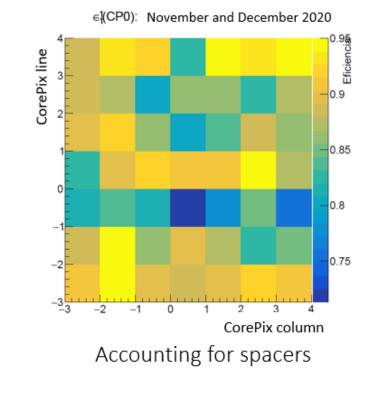
	Acquisition period		ϵ_1	ϵ_2		ϵ_3	
	Acquisition period	Mean	Uncertainty	Mean	Uncertainty	Mean	Uncertainty
$\left(\right)$	August 2020	-	-	-	-	82.4	0.7
Į	September 2020	-	-	-	-	78.7	0.7
	November e December 2020	84.0	0.5	80.6	0.6	83.4	0.5
U	January and February 2020	85.7	0.4	82.5	0.5	87.1	0.4
	April and May 2021	86.2	0.7	81.2	0.8	84.3	0.7
	May and June 2021	84.8	0.5	75.5	0.6	80.8	0.5
	1 - 14 September 2021	85.3	0.9	75.8	1.0	81.7	0.9
	15 - 26 September 2021	80.1	0.9	72.1	1.0	78.6	0.9


Acquisition period		ϵ_1		ϵ_2 ϵ_3]
Acquisition period	Mean	Uncertainty	Mean	Uncertainty	Mean	Uncertainty	
August 2020	-	-	-	-	85.4	0.7	
September 2020	-	-	-	-	81.6	0.8	1ι
November and December 2020	86.3	0.5	82.9	0.6	86.4	0.5] [
January and February 2020	88.1	0.5	84.9	0.5	90.3	0.5	J
April and May 2021	86.1	0.7	81.2	0.8	84.9	0.7	
May and June 2021	84.7	0.5	75.5	0.6	81.4	0.5	1
1 - 14 September 2021	85.2	0.9	75.8	1.0	82.3	0.9]
15 - 26 September 2021	80.0	0.9	72.0	1.0	79.2	0.9	

Vertical efficiency Calculation optimization: misalignments

Vertical efficiency Calculation optimization: spacers




Vertical efficiency Calculation optimization: spacers

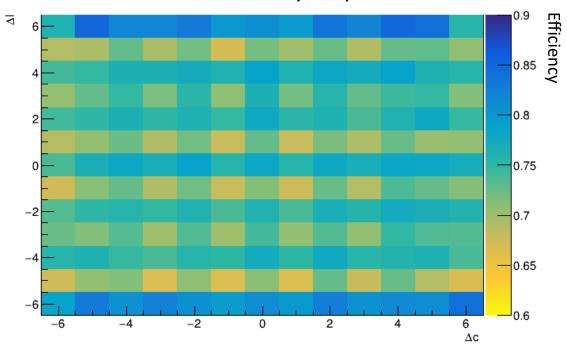
15	19	10	28	35	53	44
3	7	23	29	36	41	57
16	20	11	30	37	54	45
4	8	24	31	38	42	<mark>58</mark>
17	21	25	32	39	55	46
5	9	26	33	52	43	59
18	22	27	34	40	56	47

Vertical efficiency Calculation optimization: spacers

Vertical efficiency

Detector optimization: modification of the electronic gains

Goal	Action		Consequences
Uniformize the CorePix	Modification of the CorePix	Using the pad with the highest charge median as reference	.Increase of the efficiencies .Increase of the number of events with multiple hits .Pad saturation
	gains	Using the mean of the charge medians as reference	. Uniformization of the CorePix
Inviabilize cross-talk by the exterior pads	Modification of the exterior gains (inactivation of the exterior pads)		.Decrease of the efficiencies


$$\hat{\epsilon_2}(\theta_m) = \frac{\sum_{i,j \text{ such that } \theta = \theta_m} \left(\frac{\sum_{k=1}^{M_{ij}} N_{ijh_k}}{Nij}\right)}{\sum_{i,j \text{ such that } \theta = \theta_m} 1}$$

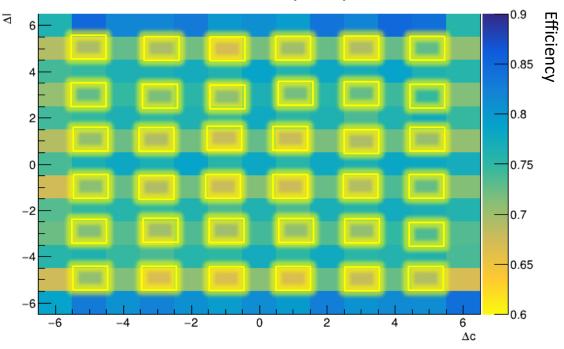
- *i* and *j* are the pads crossed in planes 1 and 3

- h_k is a pad physically crossable in plane 2 in accordance with the trajectory traced by $i \in j$

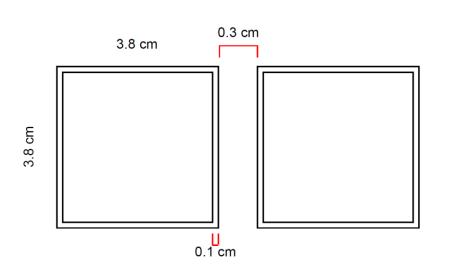
- M_{ij} is the maximum number of h_k existent for the pair i and j

General efficiency for plane 2

General efficiency Initial formulation

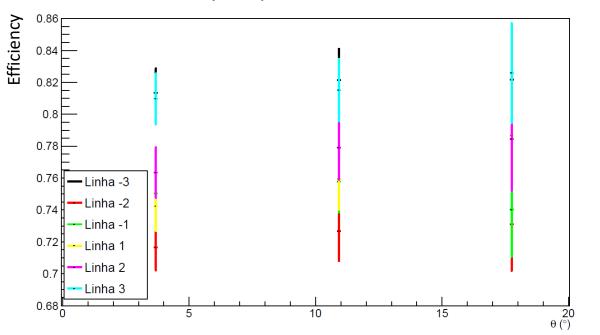

$$\hat{\epsilon_2}(\theta_m) = \frac{\sum_{i,j \text{ such that } \theta = \theta_m} \left(\frac{\sum_{k=1}^{M_{ij}} N_{ijh_k}}{Nij}\right)}{\sum_{i,j \text{ such that } \theta = \theta_m} 1}$$

- *i* and *j* are the pads crossed in planes 1 and 3


- h_k is a pad physically crossable in plane 2 in accordance with the trajectory traced by $i \in j$

- M_{ij} is the maximum number of h_k existent for the pair i and j

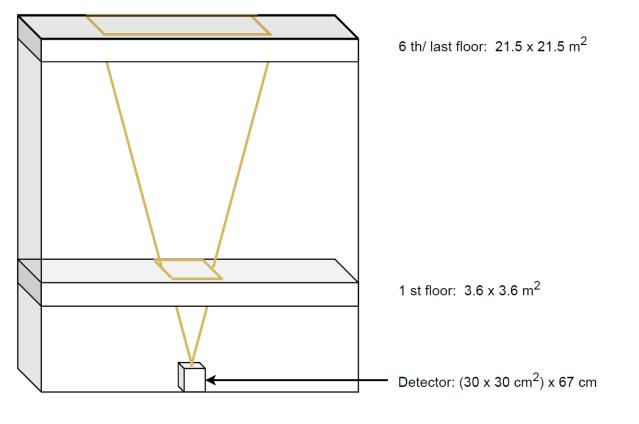
General efficiency for plane 2


General efficiency Initial formulation

15	19	10	28	35	53	44
3	7	23	29	36	41	57
16	20	11	30	37	54	45
4	8	24	31	38	42	58
17	21	25	32	39	55	46
5	9	26	33	52	43	59
18	22	27	34	40	56	47

General efficiency

Dead area and spacers

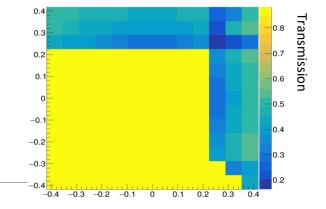


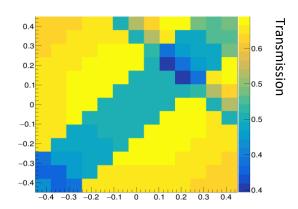
General efficiency for plane 2: case between columns

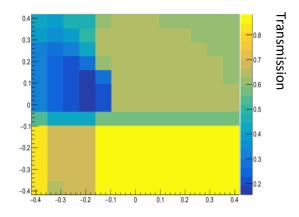
- It's possible to characterize the spacers effect per line
- The inactive area due to the spacers goes to 3x the spacers physical volume
- The dead area between neighbor pads is, approximately, 70% of that same region

General efficiency Dead Area and spacers

Building reconstruction Simulated reconstruction

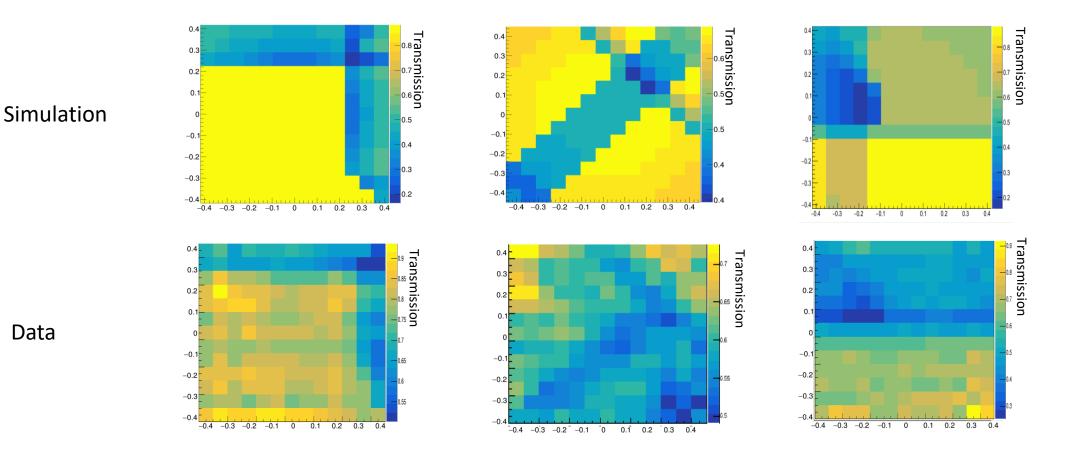



(Not up to scale)


Building reconstruction Simulated reconstruction

Building structures considered:

- walls
- ceilings
- beams
- columns
- stone benches



Building reconstruction

Simulated reconstruction *versus* experimental reconstruction

Questions

- why does plane 2 have a lower efficiency ?
- how do exterior pads influence interior pads?
- do spacers affect beyond their physical volume?
- are there any more structures than the ones considered in the simulation?

Thank you for listening

Any questions?