Astroparticle physics at extreme energies and the muon puzzle

Café com Física, Coimbra, June 15th 2022

Ruben Conceição

IJF TÉCNICO LISBOA

Cosmic ray energy spectrum

(Charged particles continuously bombarding Earth)

Cosmic ray energy spectrum

(Charged particles continuously bombarding Earth)

Why do we care?

Ultra-high-energy gamma-rays

The LHAASO experiment detected photons from the Crab Nebula with energies surpassing 1 PeV (10¹⁵ eV)

Lorentz Invariance Violation

The analysis of the energy spectrum can be used to evaluate LIV at energies above the Planck scale!

$$E^2 - p^2 = m^2 + \eta^{(n)} \frac{p^{n+2}}{M_{\rm Pl}^{n+2}}$$

Pierre Auger Observatory

Southern Wide-field Gamma-ray Observatory

The Southern Wide-field Gamma-ray Observatory

VHE Gamma Rays

Exploring the extreme Universe

2004

2025 2030

2020 2025

2040

Ultra high energy cosmic rays Pierre Auger Observatory

UHECRs

Pierre Auger Observatory

Area: 3000 km²

Located in the Pampa Amarilla, Mendoza, Argentina Altitude: 1400 m a.s.l.

Primary Cosmic Ray

Pierre Auger Observatory

- 4 Fluorescence Detectors (FD)
- 6 x 4 Fluorescence Telescopes

- ~ 1600 Surface Detectors (SD) Stations
- SD stations spaced by 1.5 km
- Covering an area of 3000 km²

Pierre Auger Collaboration

Argentina Australia Belgium Brazil Colombia Czech Republic France Germany Italy Mexico Netherlands Poland Portugal Romania Slovenia Spain USA

International collaboration of 17 Countries and ~ 400 scientists

Pierre Auger Observatory

Surface detector

WCD + Fluorescence Detector

Pierre Auger Observatory

ruben@lip.pt

Fluorescence Detector

- Quasi-calorimetric energy measurement

Sensitive to both e.m. and muonic shower components

♦ Calibration of SD with FD

- ♦ FD provides a quasi-calorimetric energy measurement
- Improve geometry reconstruction ♦ For hybrid events
- ♦ Better assess/control systematic uncertainties
- Different insights of the shower
 - Access different shower components
 - ♦ Test shower consistency

Hybrid technique

Ruben Conceição

17

Pierre Auger Observatory (Low energy extensions)

3 additional FD telescopes with a high \diamond elevation FoV

♦ Infill

 \diamond Denser array (433 m and 750 m grid)

AMIGA \diamond

- ♦ Buried scintillators (muon detectors)
 - ♦ 7 stations
 - ♦ 30 (60) m² scintillator modules
 - ♦ 2.3 m below ground

Ultra High Energy Cosmic Rays

Ultra High Energy Cosmic Rays What have we learned so far?

Are UHECRs produced in our galaxy?

Are UHECRs produced in our galaxy?

Galaxy Plane

UHECR have an extra-galactic origin

Galaxy Plane

180

♦ UHECRs are accelerated:

- ♦ somewhere in our Universe
 - If from the photon and neutrino limits (next class)
- ♦ Outside the galaxy

Science 357 (2017) no.6537, 1266-1270

-90

UHECR energy spectrum

Put strong constraints on UHECR production and propagation

But the nature of the suppression is still unclear!!

J E³ [eV² km⁻² sr⁻¹ yr⁻¹]

Phys. Rev. Lett. 125 (2020) 121106

X_{max} distribution momenta

Proton showers have a deeper X_{max} and with more fluctuation event-by-event than iron showers

Composition fits to X_{max}

35th ICRC, PoS (2017) 506

The primary **composition** goes from **light to heavier** as its energy increases

Shower physics Peeking into high-energy hadronic interactions

EAS engine

Electromagnetic component

Hadronic component

Muonic component

The challenge

The challenge

p-p @ 14 TeV

Exploration of inclined showers

- \diamond Muons \rightarrow Assess Hadronic interaction models
- ♦ Data selection
 - ♦ Zenith angles [62°; 80°]
 - $* E > 4 \times 10^{18} eV$

 \diamond Inclined shower \rightarrow Muons

Exploration of inclined showers

- \diamond Muons \rightarrow Assess Hadronic interaction models
- ♦ Data selection
 - ♦ Zenith angles [62°; 80°]
 - $* E > 4 \times 10^{18} eV$

Energy given by the Fluorescence Detector

 $\rho_{\mu}(\text{data}) = N_{19} \cdot \rho_{\mu}(\text{QGSJETII03}, p, E = 10^{19} eV, \theta)$

$$R_{\mu} = \frac{N_{\mu}^{data}}{N_{\mu,19}^{MC}}$$

Ruben Conceição

Phys.Rev.Lett. 126 (2021) 15, 152002

The EAS muon puzzle @ Auger

Eur.Phys.J.C 80 (2020) 8, 751

Phys.Rev.Lett. 126 (2021) 15, 152002

WHISP

Working Group for Hadronic Models and Shower Physics (WHISP) Meta-data analysis of 9 cosmic ray experiments: AGASA, IceCube, KASCADE-Grande, NEVOD-DECOR, Pierre Auger Observatory (SD+FD, UMD+FD), SUGAR, Telescope Array, Yakutsk

WHISP: EAS muon puzzle

 Energy-rescaling and mass subtraction required for comparison
 A subtraction
 A subtract Linear fit finds significant slope of muon excess in data at 8-10 sigma level

Shower-to-shower muon number relative fluctuations

ctuation umber of Muons Relativ 2

0

0

0

0

Muon

0

Average Number of Muons

Ruben Conceição

Phys.Rev.Lett. 126 (2021) 15, 152002

Implies a strong control over the detector response (RPC hodoscopes -Coimbra!)

Need of an independent energy scale (FD)

Phys.Rev.Lett. 126 (2021) 15, 152002

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data

Phys.Rev.Lett. 126 (2021) 15, 152002

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data

L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

 $N_{\mu} \sim E_{\rm had}$

 α_1 is the fraction of energy going into the hadronic sector in the first interaction

Phys.Rev.Lett. 126 (2021) 15, 152002

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

 α_1 is the fraction of energy going into the hadronic sector in the first interaction

$$\sigma(\alpha) \to 70\% \, \sigma(N_{\mu})$$

Phys.Rev.Lett. 126 (2021) 15, 152002

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data

L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

 α_1 is the fraction of energy going into the hadronic sector in the first interaction

$$\sigma(\alpha) \to 70\% \, \sigma(N_{\mu})$$

Suggestion that muon deficit might be related with description of low energy interactions

Pierre Auger Observatory Future Plans

Multi-hybrid shower events

(A plethora of measurements to fully understand the shower)

Southern Wide-field Gamma-ray Observatory Very High Energy Gamma Rays

46

Complementary to the powerful Cherenkov Telescope Array project

Sagittarius

Some interesting highlights...

Fermi bubbles - gamma-ray emission (up to ~100 GeV) in outbursts from our galaxy

Search PeVatron sources (10¹⁵ eV) which should be the birth place of cosmic rays up to 10¹⁷ eV

SWGO

(Southern Wide-field Gamma-ray Observatory)

3 year R&D project to design the next gamma-ray wide field of view experiment

Goal: to cover the high energy Southern gamma-ray sky from ~100 GeV to ~10 PeV

Countries in SWGO Institutes

Argentina*, Brazil, Chile, Czech Republic, Germany*, Italy, Mexico, Peru, Portugal, South Korea, United Kingdom, **United States***

Supporting scientists

Australia, Bolivia, Costa Rica, France, Japan, Poland, Slovenia, Spain, Switzerland, Turkey

*also supporting scientists

The challenge...

- ♦ To design an experiment able to fulfil the following requirements:
 - Auon tagging/counting capability
 - Lower energies
 - to be placed at high
 is a second altitude (~5000 m a.s.l.)
 - Compact array
 - Higher energies
 - Large area (~ few km²)

Summary (I)

Summary (II)

ASTROPHYSICAL SOURCES

Astroparticle Physics at Extreme Energies

HADRONIC INTERACTIONS

Acknowledgements

Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

REPÚBLICA PORTUGUESA

