The NEXT experiment: searching for neutrinoless double

beta decay in high pressure gaseous Xe

A. Simón on behalf of the NEXT collaboration

Neutrino knowns

- Neutral fermion.
- Predicted by Pauli in 1930 as a solution of the beta-particle energy conundrum.
- Discovered by Cowan and Reines (1956)
- Only interact weakly.
- 3 neutrino flavors: v_e , v_μ , v_τ .
- Flavor oscillation.
- Have mass.
 - Really small \rightarrow Lightest fermion.

F. Reines and C. Cowan

June 1st, 2022

Café com Física, Universidade de Coimbra

Neutrino knowns

- Neutral fermion.
- Predicted by Pauli in 1930 as a solution of the beta-particle energy conundrum.
- Discovered by Cowan and Reines (1956)
- Only interact weakly.
- 3 neutrino flavors: v_e , v_μ , v_τ .
- Flavor oscillation.
- Have mass.
 - Really small \rightarrow Lightest fermion.

• We know there are many things we don't know about it!

F. Reines and C. Cowan

Café com Física, Universidade de Coimbra

Neutrino unknowns

- What's the neutrino mass ordering?
- What's CP phase value?
- Are there sterile neutrinos?
- Are neutrinos Dirac or Majorana fermions?

- Particle = Antiparticle.
- Proposed by Ettore Majorana in 1937.
- Only in chargeless particle:
 - Neutrinos are the only fermion candidates.
- Why?
 - Easy explanation of the 'abnormally' small neutrino mass.
 - Plausible explanation for matter-antimatter asymmetry.
 - Leptonic number violation.

Neutrino mass origin

$\nu = \begin{pmatrix} \nu_L \\ 0 \end{pmatrix} \quad \overline{\nu} = \begin{pmatrix} 0 \\ \overline{\nu_L} \end{pmatrix} \quad \longrightarrow \quad \mathcal{L}_{SM} \sim m(\overline{\nu_L}\nu_R + \overline{\nu_R}\nu_L) \equiv 0$

Dirac

- Add right-handed components.
- Field described by 4-component spinor.

$$\nu = \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix} \quad \overline{\nu} = \begin{pmatrix} \overline{\nu}_R \\ \overline{\nu}_L \end{pmatrix}$$
$$\mathcal{L}_D \sim m_D(\overline{\nu_L}\nu_R + \overline{\nu_R}\nu_L)$$

Majorana

- Applies the Majorana condition: $\nu = \nu^c \rightarrow \nu_R = \nu_L^c$
- Field described by 2-component spinor.

$$\begin{split} \boldsymbol{\nu} &= \begin{pmatrix} \nu_L \\ \nu_L^c \end{pmatrix} \\ \mathcal{L}_M &\sim m_M (\overline{\nu_L} \nu_L^c + h.c.) \end{split}$$

Double beta decay

- Decay where $Z \rightarrow (Z+2) + 2e^- + (2\nu)$
- Single beta decay energetically forbidden.
- Second-order weak process \rightarrow long lifetime.

Double beta decay modes

ββ2ν

- Observed in several nuclei.
- Half-lifes between 10¹⁸-10²¹ years.
- Allowed in Standard Model.
- Energy distributed between e^{-} and v.

ββΟν

- Hypothetical decay.
- Half-lifes longer than 10²⁶ years.
- Not allowed in Standard Model.
- Electrons take all the available energy.

Neutrinoless double beta decay

- If observed \rightarrow neutrinos = Majorana particles.
- Can help constrain the mass scale and, possibly, neutrino hierarchy.
- Currently: starting to look into the inverted hierarchy region.

Experimental challenge

$$T_{1/2}^{\beta\beta0\nu} > 2.3 \cdot 10^{26} yr^{-1}$$

• How many events would we observe if half-life was the current limit?

$$N_{\beta\beta0\nu} = \log 2 \cdot \frac{M_{\beta\beta} \cdot N_A}{W_{\beta\beta}} \cdot \varepsilon \cdot \frac{t}{T_{1/2}^{\beta\beta0\nu}}$$

- 100 kg of isotope
- Xenon detector

—

- \rightarrow M_{$\beta\beta$} = 100 kg
- \rightarrow W_{$\beta\beta$} = 135.9 g/mol
- Perfect efficiency $\rightarrow \epsilon = 1$
- 1 year of data taking \rightarrow t = 1 yr

Experimental challenge

$$T_{1/2}^{\beta\beta0\nu} > 2.3 \cdot 10^{26} yr^{-1}$$

How many events would we observe if half-life was the current limit?

$$N_{\beta\beta0\nu} = \log 2 \cdot \frac{M_{\beta\beta} \cdot N_A}{W_{\beta\beta}} \cdot \varepsilon \cdot \frac{t}{T_{1/2}^{\beta\beta0\nu}}$$

- 100 kg of isotope —
- Xenon detector _

—

—

- \rightarrow M_{BB} = 100 kg
- \rightarrow W_{ββ} = 135.9 g/mol
- Perfect efficiency
- 1 year of data taking \rightarrow t = 1 yr

9

64

- $\rightarrow \varepsilon = 1$

Experimental challenge: sensitivity

- In the case of no excess \rightarrow Upper limit.
- Sensitivity = achievable upper limit on $m_{\beta\beta} (m_{\beta\beta} \propto T_{1/2})$.

No background

$$m_{\beta\beta} = K_1 \sqrt{\frac{1}{\varepsilon \cdot M_{\beta\beta} \cdot t}}$$

Experimental challenge: sensitivity

- In the case of no excess \rightarrow Upper limit.
- Sensitivity = achievable upper limit on $m_{\beta\beta} (m_{\beta\beta} \propto T_{1/2})$.
- In real life things are not so simple \rightarrow Background.

No background

$$m_{\beta\beta} = K_1 \sqrt{\frac{1}{\varepsilon \cdot M_{\beta\beta} \cdot t}}$$

Experimental challenge: sensitivity

- In the case of no excess \rightarrow Upper limit.
- Sensitivity = achievable upper limit on $m_{\beta\beta}$ ($m_{\beta\beta} \propto T_{1/2}$).
- In real life things are not so simple \rightarrow Background.

Experimental challenge: isotopes, efficiency and exposure

 $c \cdot \Delta E$ $m_{\beta\beta}$

11/64

Café com Física, Universidade de Coimbra

Experimental challenge: isotopes, efficiency and exposure

June 1st, 2022

Café com Física, Universidade de Coimbra

Experimental challenge: isotopes, efficiency and exposure

Café com Física, Universidade de Coimbra

Experimental challenge: energy resolution

$$m_{\beta\beta} = K_2 \sqrt{\frac{1}{\varepsilon}} \sqrt[4]{\frac{c \ \Delta E}{M_{\beta\beta} \cdot t}}$$

- Mandatory:
 - Only way to suppress $\beta\beta 2\nu$ background.

Experimental challenge: energy resolution

$$m_{\beta\beta} = K_2 \sqrt{\frac{1}{\varepsilon}} \sqrt[4]{\frac{c \,\Delta E}{M_{\beta\beta} \cdot t}}$$

- Mandatory:
 - Only way to suppress $\beta\beta 2\nu$ background.
 - Improves S/N in case of excess in ROI.

Experimental challenge: background rate

$$m_{\beta\beta} = K_2 \sqrt{\frac{1}{\varepsilon}} \sqrt[4]{\frac{c \cdot \Delta E}{M_{\beta\beta} \cdot t}}$$

- Extremely rare decay → ultra low-background required.
- Built underground (LSC, LNGS, etc.) ~ 10³ m.w.e.
- Natural radiactivity (²³⁸U, ²³²Th)
 - Lifetime $\sim 10^9 10^{10}$ years:
 - Extra shielding for surroundings' background.
 - Radiopure materials needed.

²³⁸U decay chain

Experimental challenge: background rejection tools

Self-shielding

Track topology

Daughter tagging

Neutrino Experiment with a Xenon TPC

- International staged experiment that aims to detect neutrinoless double beta decay (ββ0v) in ¹³⁶Xe.
- High pressure gas TPC filled with xenon enriched at 90% in ¹³⁶Xe.
- Operates at Laboratorio Subterráneo de Canfranc (Spain).

Neutrino Experiment with a Xenon TPC

- International staged experiment that aims to detect neutrinoless double beta decay ($\beta\beta$ 0v) in ¹³⁶Xe.
- High pressure gas TPC filled with xenon enriched at 90% in ¹³⁶Xe. •
- Operates at Laboratorio Subterráneo de Canfranc (Spain).

Detector concept

		EL
	I	
	I. State of the second s	ll is
	I. State of the second s	II N
GV PI	I. State of the second s	LI B
	I. State of the second s	
	CATHUDE	ANODE

Café com Física, Universidade de Coimbra

Detector concept

16/64

Detector concept

Detector concept

DOI: 10.3390/s21020673

DOI: 10.3390/s21020673

Detector concept

DOI: 10.3390/s21020673

S2

16/64

Detector concept

Detector concept

${{Sensitivity}\over {\cal S}(m_{etaeta})\propto \epsilon^{-{1\over 2}}(\Delta E\cdot c\cdot 1/Mt)^{1/4}$

Café com Física, Universidade de Coimbra

17/64

Topological signature

June 1st, 2022

Café com Física, Universidade de Coimbra

Topological signature

Café com Física, Universidade de Coimbra

Reject events with multiple tracks and a single blob.

June 1st, 2022

Experimental program

June 1st, 2022

- First phase (Oct '16 Jul '21) of the NEXT program at LSC.
- 50 cm drift, 40 cm diameter TPC:
 - **~4.3 kg of Xe** gas @ 10 bar in active volume.

- First phase (Oct '16 Jul '21) of the NEXT program at LSC.
- 50 cm drift, 40 cm diameter TPC:
 - **~4.3 kg of Xe** gas @ 10 bar in active volume.

Goals

• Validation of radiopure technological solutions in a large detector.

- First phase (Oct '16 Jul '21) of the NEXT program at LSC.
- 50 cm drift, 40 cm diameter TPC:
 - ~4.3 kg of Xe gas @ 10 bar in active volume.

Goals

- Validation of radiopure technological solutions in a large detector.
- Evaluation and in-situ determination of the background for future detector iterations.

20/64

NEXT-White (NEW) detector

- First phase (Oct '16 Jul '21) of the NEXT program at LSC.
- 50 cm drift, 40 cm diameter TPC:
 - ~4.3 kg of Xe gas @ 10 bar in active volume.

Goals

- Validation of radiopure technological solutions in a large detector.
- Evaluation and in-situ determination of the background for future detector iterations.
- Measurement of ¹³⁶Xe $\beta\beta2\nu$ decay.

Café com Física, Universidade de Coimbra

21/64

NEW data acquisition system

- FPGA-based trigger:
 - Trigger on PMT signals
 - Flexible: area, width, height.
 - Single peak and double peak.

NEW data acquisition system

- FPGA-based trigger:
 - Trigger on PMT signals
 - Flexible: area, width, height.
 - Single peak and double peak.
- Simultaneous dual trigger data-taking:
 - < 100 keV: ^{83m}Kr (41.5 KeV) for continuous detector characterization.
 - > 400 keV: low-background data taking and high-energy calibration.

22 /

64

NEW data acquisition system

- FPGA-based trigger:
 - Trigger on PMT signals
 - Flexible: area, width, height.
 - Single peak and double peak.
- Simultaneous dual trigger data-taking:
 - < 100 keV: ^{83m}Kr (41.5 KeV) for continuous detector characterization.
 - > 400 keV: low-background data taking and high-energy calibration.
- Throughput reduction:
 - Zero suppression on SiPM signals.
 - Data compression on PMTs.

22 /

^{83m}Kr calibration

- ^{83m}Kr leaves a deposition of ~41.5 keV \rightarrow Point-like.
- Gas source \rightarrow Uniformly distributed.
- Ideal for detector characterization:
 - Geometrical energy corrections.
 - e⁻ lifetime.
 - Optical response.

^{83m}Kr calibration

- ^{83m}Kr leaves a deposition of ~41.5 keV \rightarrow Point-like.
- Gas source \rightarrow Uniformly distributed.
- Ideal for detector characterization:
 - Geometrical energy corrections.
 - e⁻ lifetime.
 - Optical response.
- Easy reconstruction:
 - XY \rightarrow Average of SiPM signal.
 - $\quad Z \quad \rightarrow v_{\text{drift}} (t_{\text{S2}} t_{\text{S1}}).$
 - E \rightarrow Integral of S2 peak.

23 / 64

June 1st, 2022

June 1st, 2022

Café com Física, Universidade de Coimbra

24/64

^{83m}Kr calibration: optical response

- SiPM response impacted by smearing:
 - Instrumental \rightarrow SiPM pitch, SiPM distance to EL.
 - Physics $\rightarrow e^{-}$ diffusion, light spread.

^{83m}Kr calibration: optical response

- SiPM response impacted by smearing:
 - Instrumental \rightarrow SiPM pitch, SiPM distance to EL.
 - Physics $\rightarrow e^{-}$ diffusion, light spread.
- Obtain the point spread function with Kr (PSF)
 - Average fraction of photons detected at a given distance from the event origin.

26/64

High energy calibration

- 2 external sources:
 - 137 Cs → 662 keV gamma
 - 208 TI → 2.614 MeV gamma + pair-production peak at 1.592 MeV.
- Evaluate energy resolution at different energies.

High energy calibration

- 2 external sources:
 - 137 Cs → 662 keV gamma
 - 208 Tl → 2.614 MeV gamma + pair-production peak at 1.592 MeV.
- Evaluate energy resolution at different energies.
- Evaluate topological discrimination using e^+e^- signal \rightarrow mimic $\beta\beta$.

27/64

High energy calibration: energy resolution

- Energy reconstruction:
 - Make hits \rightarrow 1 hit = Response of a single SiPM in temporal slice Δt .
 - XY from SiPM, Z from $t_{\Delta t} t_{S1}$.
 - PMT energy distributed based on SiPM response.

High energy calibration: energy resolution

- Energy reconstruction:
 - Make hits \rightarrow 1 hit = Response of a single SiPM in temporal slice Δt .
 - XY from SiPM, Z from $t_{\Delta t} t_{S1}$.
 - PMT energy distributed based on SiPM response.
 - Correct hits' energy individually based on its position.

Event hits

380 N

360

340 320

40 20

0

- Signals affected by blurring \rightarrow Reverse the blurring!
- Richardson-Lucy deconvolves iteratively the blurring.
 - Use the XY point-spread function (PSF).

2D PSF \rightarrow 2D deconvolution \rightarrow 3D tracks:

- Signals affected by blurring \rightarrow Reverse the blurring!
- Richardson-Lucy deconvolves iteratively the blurring.
 - Use the XY point-spread function (PSF).

2D PSF \rightarrow 2D deconvolution \rightarrow 3D tracks:

- Signals affected by blurring \rightarrow Reverse the blurring!
- Richardson-Lucy deconvolves iteratively the blurring.
 - Use the XY point-spread function (PSF).

2D PSF \rightarrow 2D deconvolution \rightarrow 3D tracks:

- <u>Slice</u> the signal in 2 µs interval

June 1st, 2022

29/64

Track reconstruction

- Signals affected by blurring \rightarrow Reverse the blurring!
- Richardson-Lucy deconvolves iteratively the blurring.
 - Use the XY point-spread function (PSF).

2D PSF \rightarrow 2D deconvolution \rightarrow 3D tracks:

- <u>Slice</u> the signal in 2 µs interval
- <u>Apply RL</u> to each slice N_{iter} times.

29<u>/64</u>

Track reconstruction

- Signals affected by blurring \rightarrow Reverse the blurring!
- Richardson-Lucy deconvolves iteratively the blurring.
 - Use the XY point-spread function (PSF).

2D PSF \rightarrow 2D deconvolution \rightarrow 3D tracks:

- <u>Slice</u> the signal in 2 µs interval
- <u>Apply RL</u> to each slice N_{iter} times.
- Join them back together.

Examples

Examples

- Voxelize output of deconvolution.
- Search of track ends.

Voxelize output of deconvolution.

380

370 360 E

-30

-40

-50 -60 (mm)

-70

- Search of track ends. .
- Integrate energy within the ends \rightarrow blobs.

2.00

- 1.75

1.50

Voxelization

0.75 [°]

0.50

- 0.25

¹¹⁰ 120

^J 130 140 150

× (mm)

ج عوار -1.25 ع

× (mm)

⁷ 130 ₁₄₀ ₁₅₀

¹¹⁰ 120

- 10

-50 -60 (mm)

-70

- Voxelize output of deconvolution.
- Search of track ends.
- Integrate energy within the ends \rightarrow blobs.
- Classify events based on lower blob energy:

34/64

High energy calibration: background rejection

- Evaluate events at the e⁻e⁺ region.
- Optimize figure of merit \rightarrow **f.o.m** = $\epsilon_{signal} / \sqrt{\epsilon_{bckg}}$

 $\epsilon = \frac{number of events with E_{blob 2} > E_{thr}}{total number of events}$

High energy calibration: background rejection

- Evaluate events at the e⁻e⁺ region.
- Optimize figure of merit \rightarrow **f.o.m** = $\epsilon_{\text{signal}}/\sqrt{\epsilon_{\text{bckg}}}$
- Fit to energy distribution \rightarrow Integrate to extract # of events.

 $\epsilon = \frac{number of events with E_{blob 2} > E_{thr}}{total number of events}$

High energy calibration: background rejection

- Scan the blob threshold to optimize f.o.m!
 - 56.6% signal efficiency
 - 3.7% background acceptance.
 - s/√b of 2.94.

4.0

B

340.00 keV

Data

Low-background data-taking

- Enriched Xe
 - 90.9% ¹³⁶Xe.
 - Exposure: 271.6 d
 - Rate: 0.758 ± 0.006 mHz
- Depleted Xe
 - 2.6% ¹³⁶Xe
 - Exposure: 208.9 d
 - Rate: 0.742 ± 0.011 mHz

2vββ: background-model fit

- ββ-like sample: fiducial containment + single track + blob cut.
- Joint ML fit to energy distributions of enriched and depleted Xe data based on MC distributions.

$$T_{1/2}^{2\nu} = 2.14^{+0.65}_{-0.38}(stat)^{+0.46}_{-0.26}(syst) \times 10^{21}$$

Background rates:

- ⁴⁰K : 10 ± 2 µHz
- ⁶⁰Co : 14 ± 2 µHz
- ²¹⁴Bi : 6 ± 3 μHz
- ²⁰⁸TI : 40 ± 2 μHz

2vββ: Direct background subtraction

- Novel method → Subtract enriched Xe and depleted Xe spectrum.
 - Quasi-independent of background model (single/double e⁻ efficiency correction).

NEXT-100

- Next phase of the NEXT program at LSC.
- ~100 kg of ¹³⁶Xe, target bckg rate of 5×10⁻⁴ cts/(keV·kg*yr)
- Advanced construction stage, installation ends later this year.

Goals

- Demonstrator for tonne-scale.
- Improved background understanding.
- $\beta\beta0\nu$ search.
- Impact of coarser tracking plane.

NEXT-100: pressure vessel and inner copper shield

- Pressure vessel: stainless steel, 13.5 bar operational pressure.
 - Status: completed.
- Inner shield: radiopure copper, 12 cm thick.
 - Status: forged & machined, cleaning ongoing.

NEXT-100: time projection chamber

- Field cage: copper rings on HDPE staves, PTFE panels for increased light collection.
 - Status: design and prototyping completed, production orders ongoing.
- Meshes (anode, gate and cathode): stainless steel rings with photoetched wire meshes.
 - Status: design and prototyping completed, production orders ongoing.

NEXT-100: readout planes

- Energy plane: 60 Hamamatsu R11410-10 PMTs behind sapphire windows.
 - Status: PMTs procured, PMT bases built, electronics completed, windows' coating ongoing.
- Tracking plane: 56 boards with 64 SiPMs each, for a total of 3584 SiPMs, pitch of 15 mm.
 - Status: **boards built** and TPB-coated, electronics **completed and tested**.

June 1st, 2022

Café com Física, Universidade de Coimbra

Towards the tonne-scale.

47/64

• Symmetric TPC

 \rightarrow Reduce e- lifetime, voltage requirements.

• Symmetric TPC

 \rightarrow Reduce e- lifetime, voltage requirements.

48/64

Towards the ton-scale: NEXT-HD

- Symmetric TPC
- **Optical fiber barrel** •
- \rightarrow Reduce e- lifetime, voltage requirements.
- \rightarrow Reduce background, increase light col.

- Symmetric TPC
- Optical fiber barrel
- Reduced SiPM pitch
- \rightarrow Reduce e- lifetime, voltage requirements.
- \rightarrow Reduce background, increase light col.
- \rightarrow Improved track reco, extra E measurement.

June 1st, 2022

Café com Física, Universidade de Coimbra

48 / 64

48/64

Towards the ton-scale: NEXT-HD

- Symmetric TPC
- Optical fiber barrel
- Reduced SiPM pitch
- Gas mixtures

- \rightarrow Reduce e- lifetime, voltage requirements.
- \rightarrow Reduce background, increase light col.
- \rightarrow Improved track reco, extra E measurement.
- \rightarrow Reduces diffusion smearing.

Optical fiber barrel mock-up

- Symmetric TPC
- Optical fiber barrel
- Reduced SiPM pitch
- Gas mixtures
- Cold gas

- \rightarrow Reduce e- lifetime, voltage requirements.
- \rightarrow Reduce background, increase light col.
- \rightarrow Improved track reco, extra E measurement.
- \rightarrow Reduces diffusion smearing.
- \rightarrow Reduce dark noise, pressure requirements.

Optical fiber barrel mock-up

- $0v\beta\beta$: ¹³⁶Xe \rightarrow Ba⁺⁺ + 2e⁻
 - Detecting $Ba^{++} \rightarrow$ essentially background free experiment.

- $0v\beta\beta$: ¹³⁶Xe \rightarrow Ba⁺⁺ + 2e⁻
 - Detecting $Ba^{++} \rightarrow$ essentially background free experiment.

- $0v\beta\beta$: ¹³⁶Xe \rightarrow Ba⁺⁺ + 2e⁻
 - Detecting $Ba^{++} \rightarrow$ essentially background free experiment.
- NEXT has developed custom barium chemosensing molecules with demonstrated single ion response in dry environments

- $0v\beta\beta$: ¹³⁶Xe \rightarrow Ba⁺⁺ + 2e⁻
 - Detecting Ba⁺⁺ → essentially background free experiment.
- NEXT has developed custom barium chemosensing molecules with demonstrated single ion response in dry environments
- Detection using single molecule fluorescent imaging (SFMI).
 - Fluorescent bicolour indicator.
 - Fluorescence on/off.

Fluorescence spectrum

Café com Física, Universidade de Coimbra

50 /

64

- $0v\beta\beta$: ¹³⁶Xe \rightarrow Ba⁺⁺ + 2e⁻
 - Detecting Ba⁺⁺ → essentially background free experiment.
- NEXT has developed custom barium chemosensing molecules with demonstrated single ion response in dry environments
- Detection using single molecule fluorescent imaging (SFMI).
 - Fluorescent bicolour indicator.
 - Fluorescence on/off.

50 / 64

June 1st, 2022

• $\beta\beta0\nu$ searches are extraordinary challenging.

- $\beta\beta0\nu$ searches are extraordinary challenging.
- NEXT technique offers 3 strong assets:
 - Great energy resolution.
 - Strong background rejection through track reconstruction.
 - Scalability.

- $\beta\beta0\nu$ searches are extraordinary challenging.
- NEXT technique offers 3 strong assets:
 - Great energy resolution.
 - Strong background rejection through track reconstruction.
 - Scalability.
- Unique possibility to operate an effectively background-free experiment with barium tagging.

- $\beta\beta0\nu$ searches are extraordinary challenging.
- NEXT technique offers 3 strong assets:
 - Great energy resolution.
 - Strong background rejection through track reconstruction.
 - Scalability.
- Unique possibility to operate an effectively background-free experiment with barium tagging.
- Timeline:
 - Recent past: detector performance, backgrounds and $2v\beta\beta$ with NEXT-White (~4 kg)
 - Short-term: $0\nu\beta\beta$ searches at the 100 kg scale with NEXT-100.
 - − Medium term: $0v\beta\beta$ searches at the tonne scale with NEXT-HD → Inverted hierarchy.
 - Longer term: NEXT-BOLD, a tonne-scale detector implementing barium tagging \rightarrow Normal hierarchy?

Richardson-Lucy in NEXT

- 2D PSF → 2D deconvolution:
 - Apply to integrated signal \rightarrow valid for short events.

53/64

Track reconstruction

- Deconvolved hits are voxelized in larger cubes
 → maximize continuity.
- Search for the track ends and characteristics using a **breadth first search algorithm**.
 - **Track**: group of connected voxels.
 - End-points: points with maximum separation along the track path.
 - **Blobs**: spherical region of a fixed given radius with an end-point as the center.
- Blob energy is obtained by summing the energy of the hits contained within the blob sphere.

Rejection performance

Optimal performance

External background suppression

3 data taking periods with **incremental background suppression improvements**:

- Run IVa (41.5 d): **External lead shield**.
- Run IVb (27.2 d): Radon abatement system (RAS) from LSC inside external lead shield.
- Run IVc (37.9 d): Internal lead shield.

Radon abatement system

June 1st, 2022

Café com Física, Universidade de

External background suppression

June 1st, 2022

Café com Física (sUniversidade) de

59 / 64

Internal ²²²Rn arXiv:1804.00471 [physics.ins-det]

- 2 background runs:
 - Just after high ²²²Rn period.
 - 16.3 days after previous one.
- Analysis of cathode electrons: ²²²Rn progenies.
- Background impact: •

Y (mm)

<u>×1</u>0⁻³

High ²²²Rn activity

Low 222Rn activity

Rate (Hz/mm)

Z distribution

Other bb2nu results

- KamLAND-Zen400: 126.3 kg*yr in ¹³⁶Xe
- EXO-200: 23.1 kg*yr in ¹³⁶Xe
- NEXT-White: 2.8 kg*yr in ¹³⁶Xe

June 1st, 2022

Café com Física, Universidade de

61/64

Muons

PRELIMINARY

- Muon flux = 4.84 ± 0.04 (stat) ± 0.02 (sys) 10⁻⁷ cm⁻² s⁻¹.
 - LSC muon monitor: 5.26 ± 0.21 10⁻⁷ cm⁻² s⁻¹ (arXiv:1902.00868 [physics.ins-det])
- Angular distribution compatible with **LSC results.** Clear correlation with the valley near LSC underground facilities.

120

100

80

60

40

20

0,

64

62

June 1st, 2022

Café com Física, Universidade de

Cosmogenic background

• Fiducial cosmogenic rate in NEW measured to be:

- Data: $R_v = 10 \pm 1 \mu Hz$, $R_g = 0.6 \pm 0.1 \mu Hz$
- Could be highly suppressed by muon veto.

June 1st, 2022

Café com Física, Universidade de

PRELIMINARY