What do we know about the Quark-Gluon Plasma?

Café com Física, Coimbra

Liliana Apolinário

Wednesday, May 18th

What is the Quark-Gluon Plasma?

SM and QCD

• Standard Model (SM);

Strong and Electro-weak interactions

Standard Model of Elementary Particles

SM and QCD

• Standard Model (SM);

• Strong and Electro-weak interactions

• Color sector of SM:

• Described by Quantum Chromodynamics (QCD)

proton structure

valence + sea (quarks and gluons)

L. Apolinário

Standard Model of Elementary Particles

From dilute QCD to dense QCD

- QCD is not limited to a collection of small particles...
- QCD matter has a rich and vast phase diagram

From dilute QCD to dense QCD

- QCD is not limited to a collection of small particles...
- QCD matter has a rich and vast phase diagram

QCD theory (1973) SU(3) Color symmetry; confinement; asymptotic freedom, ...

QGP initial idea (1975) **"Weakly coupling quark** soup" State of matter where quarks and gluons are asymptotically free

L. Apolinário

Discovering QCD phase diagram

• How to unveil the unknown corners of the QCD phase diagram?

• Through heavy-ion collisions:

L. Apolinário

Heavy-lon collisions

- Why heavy-ions?
 - Probe the QCD phase diagram
 - Understand the QCD fundamental interactions
 - Collectivity from a gauge-field theory?
 - Tools used to study created matter shared with nearby physics fields research
 - QGP vs colliding nuclei?

What is a heavy-ion collision?

• Proton-proton vs heavy-ion collisions:

Proton-proton collisions Low multiplicity event

CMS Experiment at the LHC, CERN Data recorded: 2018-Apr-28 20:29:25.681984 GMT Run / Event / LS: 315357 / 157197154 / 190

L. Apolinário

Café com Física

What is a heavy-ion collision?

Proton-proton vs heavy-ion collisions:

Proton-proton collisions Low multiplicity event

MS Experiment at the LHC, CERN Data recorded: 2018-Apr-28 20:29:25.681984 GMT Run / Event / LS: 315357 / 157197154 / 190

L. Apolinário

How to study the Quark-Gluon Plasma?

Different QGP probes will access different wavelengths:

l

- Different QGP probes will access different wavelengths:

Soft probes (bulk of the collision): low momentum particles - hydrodynamic based description

- Different QGP probes will access different wavelengths:

 - Hard probes (large-Q² process): high-momentum particles <u>pQCD based description</u>

Soft probes (bulk of the collision): low momentum particles - hydrodynamic based description

- Different QGP probes will access different wavelengths:

 - Hard probes (large-Q² process): high-momentum particles <u>pQCD based description</u>

Soft probes (bulk of the collision): low momentum particles - hydrodynamic based description

- Different QGP probes will access different wavelengths:

 - Hard probes (large-Q² process): high-momentum particles <u>pQCD based description</u>

Soft probes (bulk of the collision): low momentum particles - hydrodynamic based description

- Different QGP probes will access different wavelengths:

 - Hard probes (large-Q² process): high-momentum particles pQCD based description

Common difficulty: QGP is dynamically evolving system

All observables require interpretation in the framework of transport models

Soft probes (bulk of the collision): low momentum particles - hydrodynamic based description

Different QGP probes will access different wavelengths:

- Hard probes (large-Q² process): high-momentum particles pQCD based description

Common difficulty: QGP is dynamically evolving system

All observables require interpretation in the framework of transport models

Heavy-ion collision characterisation:

A multi-scale problem!

Soft probes (bulk of the collision): low momentum particles - hydrodynamic based description

What to we know about the Quark-Gluon Plasma?

(Bulk of the collision Low momentum particles)

Try different centralities and check response of the system to initial spatial anisotropy:

Reaction plane: z-x plane

Try different centralities and check response of the system to initial spatial anisotropy:

Superposition of multiple pp collisions

L. Apolinário

Reaction plane: z-x plane

Try different centralities and check response of the system to initial spatial anisotropy:

Superposition of multiple pp collisions

L. Apolinário

Reaction plane: z-x plane

Collective bulk behaviour

Pressure driven expansion:

Try different centralities and check response of the system to initial spatial anisotropy:

L. Apolinário

Reaction plane: z-x plane

Pressure driven expansion:

Try different centralities and check response of the system to initial spatial anisotropy:

Reaction plane: z-x plane

Try different centralities and check response of the system to initial spatial anisotropy:

Reaction plane: z-x plane

Spatial anisotropies

• Quantification through Fourier transformation of the particles angular distribution:

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} \nu_n \cos\left(n(\phi - \Psi_n)\right) \right)$$

Spatial anisotropies

Quantification through Fourier transformation of the particles angular distribution:

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} \nu_n \cos\left(n(\phi - \Psi_n)\right) \right)$$

Reaction plane angle (where the nth harmonic component has its maximum multiplicity)

Spatial anisotropies

Quantification through Fourier transformation of the particles angular distribution:

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} \nu_n \cos\left(n(\phi - \Psi_n)\right) \right)$$

Reaction plane angle maximum multiplicity)

$$\nu_2 = \left\langle \cos 2(\phi - \Psi_2) \right\rangle$$

Hydrodynamics

• Why hydrodynamics?

• Complicated to withdraw information from QCD Lagrangian...

$$\mathcal{L}_{QCD} = \mathcal{L}_q + \mathcal{L}_g$$
 $\mathcal{L}_g = -rac{1}{4} F_A^{\mu
u} F^{A\mu
u}$

 $\mathcal{L}_q = \bar{\psi}_a (i\gamma^\mu \partial_\mu \delta_{ab} - g_s \gamma^\mu t^C_{ab} A^C_\mu - m) \psi_b$

Hydrodynamics

- Why hydrodynamics?
 - Complicated to withdraw information from QCD Lagrangian...
 - Phenomenological theory to connect first principle with phenomena
 - Input includes the Equation-of-State (EoS)
 - Provided by, e.g., Lattice QCD

P = P(e, n)

$$\mathcal{L}_{QCD} = \mathcal{L}_q + \mathcal{L}_g$$

 $\mathcal{L}_g = -rac{1}{4} F_A^{\mu
u} F^{A\mu
u}$

$$\mathcal{L}_q = \bar{\psi}_a (i\gamma^\mu \partial_\mu \delta_{ab} - g_s \gamma^\mu t^C_{ab} A^C_\mu - \eta$$

Energy-momentum conservation: $\partial_{\mu}T^{\mu\nu} = 0$

Current conservation:

 $\partial_{\mu}N^{\mu} = 0$

 $m)\psi_b$

Hydrodynamics

- Why hydrodynamics?
 - Complicated to withdraw information from QCD Lagrangian...
 - Phenomenological theory to connect first principle with phenomena
 - Input includes the Equation-of-State (EoS)
 - Provided by, e.g., Lattice QCD

P = P(e, n)

$$\mathcal{L}_{QCD} = \mathcal{L}_q + \mathcal{L}_g$$

 $\mathcal{L}_g = -rac{1}{4} F_A^{\mu
u} F^{A\mu
u}$

$$\mathcal{L}_q = \bar{\psi}_a (i\gamma^\mu \partial_\mu \delta_{ab} - g_s \gamma^\mu t^C_{ab} A^C_\mu - r$$

Energy-momentum conservation: $\partial_{\mu}T^{\mu\nu} = 0$

Current conservation: $\partial_{\mu}N^{\mu} = 0$

Deviations from ideal hydro (viscous hydro) include additional coefficients: Shear viscosity η , bulk viscosity ζ , ...

 $m)\psi_b$

• QGP is an (almost) ideal fluid:

L. Apolinário

• QGP is an (almost) ideal fluid:

L. Apolinário

 $\eta/s=10^{-4}$

 $\eta/s=0.08$

η/s=0.16

L. Apolinário

• QGP is an (almost) ideal **strongly-coupled** fluid:

19

• QGP is an (almost) ideal **strongly-coupled** fluid:

Strong coupling

 $\alpha_s \simeq 1$

QGP constitution?

• Is the QGP a collection of point-like quasi-particles?

QGP

How is "vacuum QCD" modified by the QGP? **Hard Probes** (Hard scattering High momentum particles) Heavy-lon collision ----> K Hadron aas QGP phase pre-equilibrium dynamics viscous hydrodynamics free streaming collision evolution τ~0 fm/c $\tau \sim 1 \, \text{fm/c}$ $\tau \sim 10^{15} \, \text{fm/c}$ τ~10 fm/c ~3x10-25 s

• Also a multi-scale problem:

L. Apolinário

22

Also a multi-scale problem:

$$Q^2 \equiv \mathcal{O}(100^2 \text{GeV}^2 \sim 1 \text{TeV}^2)$$

Also a multi-scale problem:

L. Apolinário

Evolving medium

Also a multi-scale problem:

Medium-induced energy loss?

Collisional energy loss?

Evolving medium

Also a multi-scale problem:

L. Apolinário

Evolving medium

In-medium processes

- Amount of energy loss measures transparency to the passage of a high momentum particle:
 - Towards higher accuracy in elementary building blocks of the parton shower

In-medium processes

- Amount of energy loss measures transparency to the passage of a high momentum particle:
 - Towards higher accuracy in elementary building blocks of the parton shower

Relevant for heavy (low-energy) partons

L. Apolinário

Dominant for light (high-energy) partons

Inelastic scattering processes:

• Accumulation of momenta enhances gluon radiation:

• Accumulation of momenta enhances gluon radiation:

- In addition to energy loss, parton also undergoes transverse momentum diffusion
 - Medium-induced transverse momentum broadening

Transport coefficient:

$$\hat{q} = \frac{\langle k_T \rangle}{\lambda}$$
$$\hat{q} \propto \int d^2 \mathbf{q}^2 q^2 \frac{d\sigma(\mathbf{q})}{d^2 \mathbf{q}}$$

• Accumulation of momenta enhances gluon radiation:

- In addition to energy loss, parton also undergoes transverse momentum diffusion
 - Medium-induced transverse momentum broadening

Transport coefficient:

$$\hat{q} = \frac{\langle k_T \rangle}{\lambda}$$
$$\hat{q} \propto \int d^2 \mathbf{q}^2 q^2 \frac{d}{d^2}$$

Dipole cross-section (collision rate):

$$\sigma(\boldsymbol{r}) = \int_{\boldsymbol{q}} V(\boldsymbol{q}) \left(1 - e^{i\boldsymbol{q}\boldsymbol{r}} \right)$$

24

Accumulation of momenta enhances gluon radiation:

- In addition to energy loss, parton also undergoes transverse momentum diffusion
 - Medium-induced transverse momentum broadening

Transport coefficient:

$$\hat{q} = \frac{\langle k_T \rangle}{\lambda}$$
$$\hat{q} \propto \int d^2 \mathbf{q}^2 q^2 \frac{d}{dt}$$

Dipole cross-section (collision rate):

Medium-induced energy loss and momentum broadening closely connected!

Energy Loss

- Jet quenching was a major step in establishing the QGP
 - It was needed:
 - Theoretical developments to accurately address QGP-jet interactions
 - Experimental control to reconstruct jets in a large and fluctuating background

Initial efforts towards global jet properties

25

Jet spectrum affected by jet-QGP interactions:

Energy loss will shift population towards smaller p_T

 $p_{T,jet}$ 26

Jet spectrum affected by jet-QGP interactions:

Energy loss will shift population towards smaller p_T

 $p_{T,jet}$ 26

Jet spectrum affected by jet-QGP interactions:

Energy loss will shift population towards smaller p_T

 $p_{T,jet}$ 26

• Jet spectrum affected by jet-QGP interactions:

• Energy loss will shift population towards smaller p_T

 $R_{AA} = \frac{Y_{AA}^X}{\langle T_{AA} \rangle \cdot \sigma_{pp}^X}$

 $p_{T,jet}$ 26

Energy loss will shift population towards smaller p_T

From single-particle or jet suppression, recover transport coefficient \hat{q}

27

From single-particle or jet suppression, recover transport coefficient \hat{q}

From single-particle or jet suppression, recover transport coefficient \hat{q}

From single-particle or jet suppression, recover transport coefficient \hat{q}

Several ansatz:

- Initial state (factorisation to finalstate effects)?
 - Medium temperature and energy-density time-evolution profiles?
- QGP phase initialisation time?
- Energy loss during partonic and hadronic phases?
 - QGP EoS and degrees of freedom?

- ...

L. Apolinário

Café com Física

From single-particle or jet suppression, recover transport coefficient \hat{q}

How can we improve it?

Several ansatz:

- Initial state (factorisation to finalstate effects)?
 - Medium temperature and energy-density time-evolution profiles?
- QGP phase initialisation time?
- Energy loss during partonic and hadronic phases?
 - QGP EoS and degrees of freedom?

- ...

L. Apolinário

Café com Física

Improving medium-induced radiation

- Accuracy of radiation spectrum:
 - Relaxing previous kinematic constrains allows more sensitivity to different realistic parton-medium potentials:

Yukawa potential:
$$V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$$

HTL potential: $\frac{1}{2}n V(q) = \frac{g_s^2 N_c m_D^2 T}{q^2 (q^2 + m_D^2)}$
Energy: ω
Transverse

L. Apolinário

[Andrés, LA, Dominguez, (2002.01517)]

--- Full HTL TL = 0.4--- Full Yukawa $n_0L = 1$

Elastic energy loss

Jets in heavy-ions: going to lower energy scales

L. Apolinário

Medium: Fast expansion!

Elastic energy loss

Jets in heavy-ions: going to lower energy scales

Medium: Fast expansion!

Elastic energy loss

Jets in heavy-ions: going to lower energy scales

How fast is the energy thermalised within the QGP?

Thermalisation

- Transparency to the passage of a high momentum particle:
 - Thermalisation/Equilibration
 - How fast is the jet energy propagated and thermalised with the rest of the QGP?

Medium-induced radiation

L. Apolinário

[W. Chen, S. Cao, T. Luo, L-G. Pang, X-N. Wang (18)]

[Co-LBT: arXiv: 1704.03648]

Thermalisation

- Transparency to the passage of a high momentum particle:
 - Thermalisation/Equilibration
 - How fast is the jet energy propagated and thermalised with the rest of the QGP?

Medium-induced radiation

L. Apolinário

[W. Chen, S. Cao, T. Luo, L-G. Pang, X-N. Wang (18)]

How much do they contribute to jet observables? Where can we find it?

[Co-LBT: arXiv: 1704.03648]

Jet substructure

Looking inside jets and looking to its constituents distribution and transverse momentum spectrum:

L. Apolinário

33

Medium response

Mostly seen in jet radial profile but signatures of each approach is very different:

L. Apolinário

[Tachibana, Chang, Qin (17)] [Casalderrey-Solana, Gulhan, Milhano, Pablos, Rajagopal (14;17)] [Park, Jeon, Gale (18)]

Medium response

Mostly seen in jet radial profile but signatures of each approach is very different:

Several uncertainties... But seems to be necessary to describe excess of particles at large angles...

[Tachibana, Chang, Qin (17)] [Casalderrey-Solana, Gulhan, Milhano, Pablos, Rajagopal (14;17)] [Park, Jeon, Gale (18)]

Overall picture from hard and soft sector?

Soft Probes + Hard Probes

(Full Collision)

Soft vs Hard

• Shear viscosity can also be related to transport coefficients:

• But still model dependent...

Soft vs Hard

• Shear viscosity can also be related to transport coefficients:

• But still model dependent...

But QGP is a fast expanding medium...

What is the time-dependence of the medium properties?

Conditions to form a QGP?

QGP onset

• No energy loss in pA...

QGP onset

• No energy loss in pA... but strong evidence in support of hydrodynamic behavior

L. Apolinário

Flow coefficients well reproduced by hydro predictions, but not by initial state effects only

Light Systems

• Magnitude of Jet quenching depends on system size:

• Peripheral collisions: expected some energy loss

Studies of System Size dependence

L. Apolinário

[JEWEL: Zapp (14)]

[Citron, Dainese et al (19)]

Several changes at the same time: energy loss, nuclear overlap,...

(too many variables)

39

Light Systems

Studies of System Size dependence (always fixing geometry - [0-10]%)

L. Apolinário

[Huss, Kurkela, Mazeliauskas, Paatelainen, Van der Schee, Widemann (20)]

[arXiv:2007.13754]

Better control on initial condition to collectivity studies

40

Better control on initial condition to collectivity studies

Extrapolation from dense to light needs further understanding...

[Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (1601.03283, 1805.00961)] [Schlichting, Soudi (2008.04928)]

Extrapolation from dense to light needs further understanding...

L. Apolinário

[Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (1601.03283, 1805.00961)] [Schlichting, Soudi (2008.04928)]

Extrapolation from dense to light needs further understanding...

L. Apolinário

[Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (1601.03283, 1805.00961)] [Schlichting, Soudi (2008.04928)]

- Extrapolation from dense to light needs further understanding...
- the initial state

Future OO run similar to PbPb peripheral (better suited to system-size dependence)

Future pO run crucial do reduce nPDF uncertainties

[Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (1601.03283, 1805.00961)] [Schlichting, Soudi (2008.04928)]

Future oxygen runs can help us to determine the smallest amount of energy loss, provided that we control

- Extrapolation from dense to light needs further understanding...
- the initial state

Future OO run similar to PbPb peripheral (better suited to system-size dependence)

Future pO run crucial do reduce nPDF uncertainties

Cold or Hot nuclear matter effects?

Nucleon structure at high energy:

L. Apolinário

[Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (1601.03283, 1805.00961)] [Schlichting, Soudi (2008.04928)]

Future oxygen runs can help us to determine the smallest amount of energy loss, provided that we control

QGP evolution?

Top-initiated jets

• Reconstructed hadronic W boson jet mass:

Wrapping up

Summary

- Heavy-ions are a vibrant field full of activity
 - From far-from-equillibrium QCD to a fully thermalised medium
- Quark-Gluon Plasma studies have entered precision physics era
 - Determination of energy loss, momentum broadening and structure of a medium-modified parton showers
- Future runs / Future colliders will provide crucial input to many of our current unsolved questions
 - HL-LHC, FCC...

Summary

- Heavy-ions are a vibrant field full of activity
 - From far-from-equillibrium QCD to a fully thermalised medium
- Quark-Gluon Plasma studies have entered precision physics era
 - Determination of energy loss, momentum broadening and structure of a medium-modified parton showers
- Future runs / Future colliders will provide crucial input to many of our current unsolved questions
 - HL-LHC, FCC...

Thank you!

Acknowledgments

